• Nephrol. Dial. Transplant. · Sep 2015

    Looking to the future: predicting renal replacement outcomes in a large community cohort with chronic kidney disease.

    • Angharad Marks, Nicholas Fluck, Gordon J Prescott, Lynn Robertson, William G Simpson, William Cairns Smith, and Corri Black.
    • Aberdeen Applied Renal Research Collaboration, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK NHS Grampian, Aberdeen, UK.
    • Nephrol. Dial. Transplant. 2015 Sep 1; 30 (9): 1507-17.

    BackgroundChronic kidney disease (CKD) is common and important due to poor outcomes. An ability to stratify CKD care based on outcome risk should improve care for all. Our objective was to develop and validate 5-year outcome prediction tools in a large population-based CKD cohort. Model performance was compared with the recently reported 'kidney failure risk equation' (KFRE) models.MethodsThose with CKD in the Grampian Laboratory Outcomes Mortality and Morbidity Study-I (3396) and -II (18 687) cohorts were used to develop and validate a renal replacement therapy (RRT) prediction tool. The discrimination, calibration and overall performance were assessed. The net reclassification index compared performance of the developed model and the 3- and 4-variable KFRE model to predict RRT in the validation cohort.ResultsThe developed model (with measures of age, sex, excretory renal function and proteinuria) performed well with a C-statistic of 0.938 (0.918-0.957) and Hosmer-Lemeshow (HL) χ(2) statistic 4.6. In the validation cohort (18 687), the developed model falsely identified fewer as high risk (414 versus 3278 individuals) compared with the KFRE 3-variable model (measures of age, sex and excretory renal function), but had more false negatives (58 versus 21 individuals). The KFRE 4-variable model could only be applied to 2274 individuals because of a lack of baseline urinary albumin creatinine ratio data, thus limiting its use in routine clinical practice.ConclusionsCKD outcome prediction tools have been developed by ourselves and others. These tools could be used to stratify care, but identify both false positives and -negatives. Further refinement should optimize the balance between identifying those at increased risk with clinical utility for stratifying care.© The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.