• Crit Care · Jan 2018

    High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study.

    • Thomas Godet, Matthieu Jabaudon, Raïko Blondonnet, Aymeric Tremblay, Jules Audard, Benjamin Rieu, Bruno Pereira, Jean-Marc Garcier, Emmanuel Futier, and Jean-Michel Constantin.
    • Departement de Médecine Périopératoire (MPO), Hôpital Estaing, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 place Lucie Aubrac, Clermont-Ferrand, F-63003, France.
    • Crit Care. 2018 Jan 11; 22 (1): 3.

    BackgroundHigh frequency percussive ventilation (HFPV) combines diffusive (high frequency mini-bursts) and convective ventilation patterns. Benefits include enhanced oxygenation and hemodynamics, and alveolar recruitment, while providing hypothetic lung-protective ventilation. No study has investigated HFPV-induced changes in lung aeration in patients with early acute respiratory distress syndrome (ARDS).MethodsEight patients with early non-focal ARDS were enrolled and five swine with early non-focal ARDS were studied in prospective computed tomography (CT) scan and animal studies, in a university-hospital tertiary ICU and an animal laboratory. Patients were optimized under conventional "open-lung" ventilation. Lung CT was performed using an end-expiratory hold (Conv) to assess lung morphology. HFPV was applied for 1 hour to all patients before new CT scans were performed with end-expiratory (HFPV EE) and end-inspiratory (HFPV EI) holds. Lung volumes were determined after software analysis. At specified time points, blood gases and hemodynamic data were collected. Recruitment was defined as a change in non-aerated lung volumes between Conv, HFPV EE and HFPV EI. The main objective was to verify whether HFPV increases alveolar recruitment without lung hyperinflation. Correlation between pleural, upper airways and HFPV-derived pressures was assessed in an ARDS swine-based model.ResultsOne-hour HFPV significantly improved oxygenation and hemodynamics. Lung recruitment significantly rose by 12.0% (8.5-18.0%), P = 0.05 (Conv-HFPV EE) and 12.5% (9.3-16.8%), P = 0.003 (Conv-HFPV EI). Hyperinflation tended to increase by 2.0% (0.5-2.5%), P = 0.89 (Conv-HFPV EE) and 3.0% (2.5-4.0%), P = 0.27 (Conv-HFPV EI). HFPV hyperinflation correlated with hyperinflated and normally-aerated lung volumes at baseline: r = 0.79, P = 0.05 and r = 0.79, P = 0.05, respectively (Conv-HFPV EE); and only hyperinflated lung volumes at baseline: r = 0.88, P = 0.01 (Conv-HFPV EI). HFPV CT-determined tidal volumes reached 5.7 (1.1-8.1) mL.kg-1 of ideal body weight (IBW). Correlations between pleural and HFPV-monitored pressures were acceptable and end-inspiratory pleural pressures remained below 25cmH20.ConclusionsHFPV improves alveolar recruitment, gas exchanges and hemodynamics of patients with early non-focal ARDS without relevant hyperinflation. HFPV-derived pressures correlate with corresponding pleural or upper airways pressures.Trial RegistrationClinicalTrials.gov, NCT02510105 . Registered on 1 June 2015. The trial was retrospectively registered.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.