• Resuscitation · May 2019

    Machine learning as a supportive tool to recognize cardiac arrest in emergency calls.

    • Stig Nikolaj Blomberg, Fredrik Folke, Annette Kjær Ersbøll, Christensen Helle Collatz HC Emergency Medical Services Copenhagen, Denmark., Christian Torp-Pedersen, Michael R Sayre, Catherine R Counts, and Freddy K Lippert.
    • Emergency Medical Services Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark. Electronic address: Stig.Nikolaj.Fasmer.Blomberg@regionh.dk.
    • Resuscitation. 2019 May 1; 138: 322-329.

    BackgroundEmergency medical dispatchers fail to identify approximately 25% of cases of out of hospital cardiac arrest, thus lose the opportunity to provide the caller instructions in cardiopulmonary resuscitation. We examined whether a machine learning framework could recognize out-of-hospital cardiac arrest from audio files of calls to the emergency medical dispatch center.MethodsFor all incidents responded to by Emergency Medical Dispatch Center Copenhagen in 2014, the associated call was retrieved. A machine learning framework was trained to recognize cardiac arrest from the recorded calls. Sensitivity, specificity, and positive predictive value for recognizing out-of-hospital cardiac arrest were calculated. The performance of the machine learning framework was compared to the actual recognition and time-to-recognition of cardiac arrest by medical dispatchers.ResultsWe examined 108,607 emergency calls, of which 918 (0.8%) were out-of-hospital cardiac arrest calls eligible for analysis. Compared with medical dispatchers, the machine learning framework had a significantly higher sensitivity (72.5% vs. 84.1%, p < 0.001) with lower specificity (98.8% vs. 97.3%, p < 0.001). The machine learning framework had a lower positive predictive value than dispatchers (20.9% vs. 33.0%, p < 0.001). Time-to-recognition was significantly shorter for the machine learning framework compared to the dispatchers (median 44 seconds vs. 54 s, p < 0.001).ConclusionsA machine learning framework performed better than emergency medical dispatchers for identifying out-of-hospital cardiac arrest in emergency phone calls. Machine learning may play an important role as a decision support tool for emergency medical dispatchers.Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…