-
- U Borchard, F Berger, D Hafner, D Hermsen, and O Picker.
- Institut für Pharmakologie, Heinrich-Heine-Universität Düsseldorf.
- Herz. 1997 Jun 1; 22 Suppl 1: 28-35.
AbstractThe influence of Mg2+ and K+ on reoxygenation arrhythmias following 18 min of hypoxia (pO2 about 1 mm Hg, no glucose, 10 mmol/l2-desoxyglucose) has been investigated in isolated guinea-pig left atria (stimulation rate 1 Hz). Duration of reoxygenation arrhythmias was slightly reduced by increase in Mg2+ (0.6 to 4.8 mmol/l) and enhanced by decrease in Mg2+ (0.1 mmol/l), however, this effect was not significantly different from control (0.6 mmol/l). In contrast, low K+ (< 4 mmol/l) led to a significant (p < or = 0.05) prolongation and high K+ (> 5 mmol/l) to a significant abbreviation of reoxygenation arrhythmias. Increase in Mg2+ significantly attenuated the proarrhythmic effects of low K+ and enhanced the antiarrhythmic effects of high K+. Furthermore, the influence of Mg2+ and K+ on action potential parameters has been investigated in hypoxic guinea-pig papillary muscles (pO2 65 to 75 mm Hg). Action potential duration at 30% (APD30) and 90% repolarization (APD90) were increased by both electrolytes whereas resting potential, amplitude of the action potential and maximum upstroke velocity were not changed with the exception of a depolarization induced by elevated K+. 1 mmol/l Mg2+ increased APD30 to 145 +/- 16% (n = 6, p < 0.05) and APD90 to 117 +/- 9% (n = 6, p > 0.05) of control (0.6 mmol/l Mg2+). Increase of K+ from 2 mmol/l (control) to 4.7 mmol/l increased APD30 to 188 +/- 13% (n = 6, p < 0.05) and APD90 to 136 +/- 13% (n = 6, p < 0.05). The delay in repolarization observed already in therapeutic concentrations showed no inverse use dependence as it was not attenuated if stimulation rate was increased from 0.17 to 1 Hz which is in contrast to the effects of class 3 antiarrhythmic drugs (for example sotalol). Increase in concentration of both electrolytes led to an additive increase in action potential duration. Mg2+ (0.6 to 4.8 mmol/l) suppressed late afterdepolarizations and -contractions in K(+)-depolarized guinea-pig papillary muscles (27 mmol/l K+, 0.5 mmol/l Ba2+) induced by 2 x 10(-8) mol/l isoprenaline. The change in the triphasic contraction cycle by elevation of Mg2+ indicates that Mg2+ additionally increases stimulus-induced release of Ca2+ from the sarcoplasmic reticulum and reduces slow Ca2+ inward current. The described electrophysiological actions of the electrolytes represent mechanisms, which may explain their antiarrhythmic actions observed in clinical studies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.