• Journal of neurotrauma · Jun 2019

    Randomized Controlled Trial Comparative Study

    Kinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training.

    • Marzieh M Ardestani, Christopher E Henderson, Seyed H Salehi, Gordhan B Mahtani, Brian D Schmit, and T George Hornby.
    • 1 Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, Indianapolis, Indiana.
    • J. Neurotrauma. 2019 Jun 15; 36 (12): 2036-2044.

    AbstractRecent data demonstrate improved locomotion with high-intensity locomotor training (LT) in individuals with incomplete spinal cord injury (iSCI), although concerns remain regarding reinforcement of abnormal motor strategies. The present study evaluated the effects of LT intensity on kinematic and neuromuscular coordination in individuals with iSCI. Using a randomized, crossover design, participants with iSCI received up to 20 sessions of high-intensity LT, with attempts to achieve 70-85% of age-predicted maximum heart rate (HRmax), or low-intensity LT (50-65% HRmax), following which the other intervention was performed. Specific measures included spatiotemporal variables, sagittal-plane gait kinematics, and neuromuscular synergies from electromyographic (EMG) recordings. Correlation analyses were conducted to evaluate associations between variables. Significant improvements in sagittal-plane joint excursions and intralimb hip-knee coordination were observed following high- but not low-intensity LT when comparing peak treadmill (TM) speed before and after LT. Neuromuscular complexity (i.e., number of synergies to explain >90% of EMG variance) was also increased following high- but not low-intensity LT. Comparison of speed-matched trials confirmed significant improvements in the knee excursion of the less impaired limb and intralimb hip-knee coordination, as well as improvements in neuromuscular complexity following high-intensity LT. These findings suggest greater neuromuscular complexity may be due to LT and not necessarily differences in speeds. Only selected kinematic changes (i.e., weak hip excursion) was correlated to improvements in treadmill speed. In conclusion, LT intensity can facilitate gains in kinematic variables and neuromuscular synergies in individuals with iSCI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…