-
J Clin Monit Comput · Oct 2019
ReviewApplying machine learning to continuously monitored physiological data.
- Barret Rush, Leo Anthony Celi, and David J Stone.
- Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, 1081 Burrard Sreet, Vancouver, BC, V6Z 1Y6, Canada. bar890@mail.harvard.edu.
- J Clin Monit Comput. 2019 Oct 1; 33 (5): 887-893.
AbstractThe use of machine learning (ML) in healthcare has enormous potential for improving disease detection, clinical decision support, and workflow efficiencies. In this commentary, we review published and potential applications for the use of ML for monitoring within the hospital environment. We present use cases as well as several questions regarding the application of ML to the analysis of the vast amount of complex data that clinicians must interpret in the realm of continuous physiological monitoring. ML, especially employed in bidirectional conjunction with electronic health record data, has the potential to extract much more useful information out of this currently under-analyzed data source from a population level. As a data driven entity, ML is dependent on copious, high quality input data so that error can be introduced by low quality data sources. At present, while ML is being studied in hybrid formulations along with static expert systems for monitoring applications, it is not yet actively incorporated in the formal artificial learning sense of an algorithm constantly learning and updating its rules without external intervention. Finally, innovations in monitoring, including those supported by ML, will pose regulatory and medico-legal challenges, as well as questions regarding precisely how to incorporate these features into clinical care and medical education. Rigorous evaluation of ML techniques compared to traditional methods or other AI methods will be required to validate the algorithms developed with consideration of database limitations and potential learning errors. Demonstration of value on processes and outcomes will be necessary to support the use of ML as a feature in monitoring system development: Future research is needed to evaluate all AI based programs before clinical implementation in non-research settings.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.