-
Brain Behav. Immun. · Aug 2014
Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats.
- Chloé Boitard, Amandine Cavaroc, Julie Sauvant, Agnès Aubert, Nathalie Castanon, Sophie Layé, and Guillaume Ferreira.
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France.
- Brain Behav. Immun. 2014 Aug 1; 40: 9-17.
AbstractIn addition to metabolic and cardiovascular disorders, obesity pandemic is associated with chronic low-grade inflammation as well as adverse cognitive outcomes. However, the existence of critical periods of development that differ in terms of sensitivity to the effects of diet-induced obesity remains unexplored. Using short exposure to a high-fat diet (HFD) exerting no effects when given to adult mice, we recently found impairment of hippocampal-dependent memory and plasticity after similar HFD exposure encompassing adolescence (from weaning to adulthood) showing the vulnerability of the juvenile period (Boitard et al., 2012). Given that inflammatory processes modulate hippocampal functions, we evaluated in rats whether the detrimental effect of juvenile HFD (jHFD) on hippocampal-dependent memory is associated with over-expression of hippocampal pro-inflammatory cytokines. jHFD exposure impaired long-term spatial reference memory in the Morris water maze without affecting acquisition or short-term memory. This suggests an effect on consolidation processes. Moreover, jHFD consumption delayed spatial reversal learning. jHFD intake did neither affect basal expression of pro-inflammatory cytokines at the periphery nor in the brain, but potentiated the enhancement of Interleukin-1-beta and Tumor Necrosis Factor-alpha expression specifically in the hippocampus after a peripheral immune challenge with lipopolysaccharide. Interestingly, whereas the same duration of HFD intake at adulthood induced similar weight gain and metabolic alterations as jHFD intake, it did neither affect spatial performance (long-term memory or reversal learning) nor lipopolysaccharide-induced cytokine expression in the hippocampus. Finally, spatial reversal learning enhanced Interleukin-1-beta in the hippocampus, but not in the frontal cortex and the hypothalamus, of jHFD-fed rats. These results indicate that juvenile HFD intake promotes exaggerated pro-inflammatory cytokines expression in the hippocampus which is likely to contribute to spatial memory impairment. Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.