• J Pain · Aug 2019

    Blockade of NMDA receptors and nitric oxide synthesis potentiated morphine-induced anti-allodynia via attenuating pain-related amygdala pCREB/CREB signaling pathway.

    • Bahardokht Tolou-Dabbaghian, Ladan Delphi, and Ameneh Rezayof.
    • Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
    • J Pain. 2019 Aug 1; 20 (8): 885-897.

    AbstractThe present study investigated the role of the amygdala N-methyl-d-aspartate (NMDA) receptors/nitric oxide synthase pathway in morphine-induced anti-allodynia. Concurrently with the bilateral cannulation of the central amygdala, chronic constriction of the sciatic nerve was performed on male Wistar rats. Morphine (3-5 mg/kg) was administered intraperitoneally to induce anti-allodynia. When D-AP5, a selective NMDA receptor antagonist, (.05-.1 µg/rat) or NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), the nitric oxide synthase inhibitor (.1-.5 µg/rat), were microinjected into the central amygdala, the higher doses potentiated an ineffective dose of morphine (3 mg/kg). Microinjection of the same doses of D-AP5 and L-NAME without morphine had no effect. Comicroinjection of the ineffective doses of L-NAME (.1 µg/rat) and D-AP5 (.05 µg/rat) with a 5-minute interval, enhanced the anti-allodynic effect of morphine (3 mg/kg). Western blot analysis was employed to evaluate the levels of cyclic adenosine monophosphate-response element-binding protein (CREB) and phosphorylated CREB (pCREB) in the amygdala tissues. Our results showed that neuropathic pain increased the pCREB/CREB ratio in the amygdala, and this ratio was decreased after morphine-induced anti-allodynia. The potentiative effect of the coadministration of D-AP5/L-NAME on an ineffective dose of morphine also decreased the amygdala pCREB/CREB levels. Therefore, it seems that the amygdala pCREB/CREB signaling pathway plays a critical role in processing neuropathic pain. Moreover, the glutamate NMDA receptors and nitric oxide system in the amygdala may be involved in morphine-induced anti-allodynia. PERSPECTIVE: Neuropathic pain is difficult to treat and the exact mechanisms remain unknown. This article suggests the importance of the amygdala glutamatergic and nitric oxide systems in morphine-induced anti-allodynia. These findings might be used in clinical studies to reach a better understanding of neuropathic pain mechanisms and treatment.Copyright © 2019 the American Pain Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.