-
- Andrew Wong, Albert T Young, April S Liang, Ralph Gonzales, Vanja C Douglas, and Dexter Hadley.
- School of Medicine, University of California, San Francisco.
- JAMA Netw Open. 2018 Aug 3; 1 (4): e181018.
ImportanceCurrent methods for identifying hospitalized patients at increased risk of delirium require nurse-administered questionnaires with moderate accuracy.ObjectiveTo develop and validate a machine learning model that predicts incident delirium risk based on electronic health data available on admission.Design, Setting, And ParticipantsRetrospective cohort study evaluating 5 machine learning algorithms to predict delirium using 796 clinical variables identified by an expert panel as relevant to delirium prediction and consistently available in electronic health records within 24 hours of admission. The training set comprised 14 227 adult patients with non-intensive care unit hospital stays and no delirium on admission who were discharged between January 1, 2016, and August 31, 2017, from UCSF Health, a large academic health institution. The test set comprised 3996 patients with hospital stays who were discharged between August 1, 2017, and November 30, 2017.ExposuresPatient demographic characteristics, diagnoses, nursing records, laboratory results, and medications available in electronic health records during hospitalization.Main Outcomes And MeasuresDelirium was defined as a positive Nursing Delirium Screening Scale or Confusion Assessment Method for the Intensive Care Unit score. Models were assessed using the area under the receiver operating characteristic curve (AUC) and compared against the 4-point scoring system AWOL (age >79 years, failure to spell world backward, disorientation to place, and higher nurse-rated illness severity), a validated delirium risk-assessment tool routinely administered in this cohort.ResultsThe training set included 14 227 patients (5113 [35.9%] aged >64 years; 7335 [51.6%] female; 687 [4.8%] with delirium), and the test set included 3996 patients (1491 [37.3%] aged >64 years; 1966 [49.2%] female; 191 [4.8%] with delirium). In total, the analysis included 18 223 hospital admissions (6604 [36.2%] aged >64 years; 9301 [51.0%] female; 878 [4.8%] with delirium). The AWOL system achieved a baseline AUC of 0.678. The gradient boosting machine model performed best, with an AUC of 0.855. Setting specificity at 90%, the model had a 59.7% (95% CI, 52.4%-66.7%) sensitivity, 23.1% (95% CI, 20.5%-25.9%) positive predictive value, 97.8% (95% CI, 97.4%-98.1%) negative predictive value, and a number needed to screen of 4.8. Penalized logistic regression and random forest models also performed well, with AUCs of 0.854 and 0.848, respectively.Conclusions And RelevanceMachine learning can be used to estimate hospital-acquired delirium risk using electronic health record data available within 24 hours of hospital admission. Such a model may allow more precise targeting of delirium prevention resources without increasing the burden on health care professionals.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.