-
- Petra Kraus, V Sivakamasundari, Victoria Olsen, Victoria Villeneuve, Abbey Hinds, and Thomas Lufkin.
- Department of Biology, Clarkson University, Potsdam, NY.
- Spine. 2019 Mar 1; 44 (5): E260E268E260-E268.
Study DesignRNA in situ hybridization (RISH) allows for validation and characterization of the long noncoding (lnc) natural antisense RNA (NAT) Klhl14as in the embryonic murine intervertebral disc (IVD) in the context of loss-of-function mutants for key transcription factors (TFs) in axial skeleton development.ObjectiveValidation of Klhl14as in the developing murine IVD.Summary Of Background DataThe IVD is a focus of regenerative medicine; however, processes and signaling cascades resulting in the different cell types in a mature IVD still require clarification in most animals including humans. Technological advances increasingly point to implications of lnc NATs in transcription/translation regulation. Transcriptome data generation and analysis identified a protein encoding transcript and related noncoding antisense transcript as downregulated in embryos devoid of key TFs during axial skeleton development. Here, primarily, the antisense transcript is analyzed in this loss-of-function context.Methods4930426D05Rik and 6330403N15Rik were identified as Klhl14as and sense, respectively, two transcripts downregulated in the vertebral column of midgestation Pax1 and Pax9 mutant mouse embryos. RISH on wildtype and mutant embryos for the TF encoding genes Pax1/Pax9, Sox5/Sox6/Sox9, and Bapx1 was used to further analyze Klhl14as in the developing IVD.ResultsKlhl14as and Klhl14 were the top downregulated transcripts in Pax1; Pax9 E12.5 embryos. Our data demonstrate expression of Klhl14as and sense transcripts in the annulus fibrosus (AF) and notochord of the developing IVD. Klhl14as expression in the inner annulus fibrosus (iAF) seems dependent on the TFs Pax1/Pax9, Sox6, Sox9, and Bapx1.ConclusionWe are the first to suggest a role for the lncRNA Klhl14as in the developing IVD. Our data link Klhl14as to a previously established gene regulatory network during axial skeleton development and contribute further evidence that lnc NATs are involved in crucial gene regulatory networks in eukaryotic cells.Level Of EvidenceN/A.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.