• Cerebral cortex · Sep 2016

    Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.

    • Kazuhisa Shibata, Yuka Sasaki, Mitsuo Kawato, and Takeo Watanabe.
    • Department of Cognitive, Linguistic & Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA Department of Decoded Neurofeedback, Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan Current address: Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
    • Cereb. Cortex. 2016 Sep 1; 26 (9): 3681-9.

    AbstractVisual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree.© The Author 2016. Published by Oxford University Press.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…