• J Pain · Sep 2019

    Review

    Systematic review and neural network analysis to define predictive variables in implantable motor cortex stimulation to treat chronic intractable pain.

    • Dylan J H A Henssen, Richard L Witkam, Johan C M L Dao, Daan J Comes, Anne-Marie Van Cappellen van Walsum, Tamas Kozicz, Robert van Dongen, Kris Vissers, Bartels Ronald H M A RHMA Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands., Guido de Jong, and Erkan Kurt.
    • Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands; Unit of Functional Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address: dylan.henssen@radboudumc.nl.
    • J Pain. 2019 Sep 1; 20 (9): 1015-1026.

    AbstractImplantable motor cortex stimulation (iMCS) has been performed for >25 years to treat various intractable pain syndromes. Its effectiveness is highly variable and, although various studies revealed predictive variables, none of these were found repeatedly. This study uses neural network analysis (NNA) to identify predictive factors of iMCS treatment for intractable pain. A systematic review provided a database of patient data on an individual level of patients who underwent iMCS to treat refractory pain between 1991 and 2017. Responders were defined as patients with a pain relief of >40% as measured by a numerical rating scale (NRS) score. NNA was carried out to predict the outcome of iMCS and to identify predictive factors that impacted the outcome of iMCS. The outcome prediction value of the NNA was expressed as the mean accuracy, sensitivity, and specificity. The NNA furthermore provided the mean weight of predictive variables, which shows the impact of the predictive variable on the prediction. The mean weight was converted into the mean relative influence (M), a value that varies between 0 and 100%. A total of 358 patients were included (202 males [56.4%]; mean age, 54.2 ±13.3 years), 201 of whom were responders to iMCS. NNA had a mean accuracy of 66.3% and a sensitivity and specificity of 69.8% and 69.4%, respectively. NNA further identified 6 predictive variables that had a relatively high M: 1) the sex of the patient (M = 19.7%); 2) the origin of the lesion (M = 15.1%); 3) the preoperative numerical rating scale score (M = 9.2%); 4) preoperative use of repetitive transcranial magnetic stimulation (M = 7.3%); 5) preoperative intake of opioids (M = 7.1%); and 6) the follow-up period (M = 13.1%). The results from the present study show that these 6 predictive variables influence the outcome of iMCS and that, based on these variables, a fair prediction model can be built to predict outcome after iMCS surgery. PERSPECTIVE: The presented NNA analyzed the functioning of computational models and modeled nonlinear statistical data. Based on this NNA, 6 predictive variables were identified that are suggested to be of importance in the improvement of future iMCS to treat chronic pain.Copyright © 2019 the American Pain Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.