-
- Cheng-Chia Lee, Huai-Che Yang, Chung-Jung Lin, Ching-Jen Chen, Hsiu-Mei Wu, Cheng-Ying Shiau, Wan-Yuo Guo, Hung-Chi Pan David D Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Universi, Kang-Du Liu, Wen-Yuh Chung, and Syu-Jyun Peng.
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- World Neurosurg. 2019 May 1; 125: e132-e138.
ObjectiveTo assess the sensitivity and specificity of arteriovenous malformation (AVM) nidal component identification and quantification using an unsupervised machine learning algorithm and to evaluate the association between intervening nidal brain parenchyma and radiation-induced changes (RICs) after stereotactic radiosurgery.MethodsFully automated segmentation via unsupervised classification with fuzzy c-means clustering was used to analyze the AVM nidus on T2-weighted magnetic resonance imaging studies. The proportions of vasculature, brain parenchyma, and cerebrospinal fluid were quantified. These were compared with the results from manual segmentation. The association between the brain parenchyma component and RIC development was assessed.ResultsThe proposed algorithm was applied to 39 unruptured AVMs in 39 patients (17 female and 22 male patients), with a median age of 27 years. The median proportion of the constituents was as follows: vasculature, 31.3%; brain parenchyma, 48.4%; and cerebrospinal fluid, 16.8%. RICs were identified in 17 of the 39 patients (43.6%). Compared with manual segmentation, the automated algorithm was able to achieve a Dice similarity index of 79.5% (sensitivity, 73.5%; specificity, 85.5%). RICs were associated with a greater proportion of intervening nidal brain parenchyma (52.0% vs. 45.3%; P = 0.015). Obliteration was not associated with greater proportions of nidal vasculature (36.0% vs. 31.2%; P = 0.152).ConclusionsThe automated segmentation algorithm was able to achieve classification of the AVM nidus components with relative accuracy. Greater proportions of intervening nidal brain parenchyma were associated with RICs.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.