• Mol Pain · Jan 2019

    Upregulation of bone morphogenetic protein 2 ( Bmp2) in dorsal root ganglion in a rat model of bone cancer pain.

    • Wei Wang, Qiliang Jiang, Jingxiang Wu, Wei Tang, and Meiying Xu.
    • 1 Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
    • Mol Pain. 2019 Jan 1; 15: 1744806918824250.

    AbstractBone cancer pain is one of the most severe and intractable complications in patients suffering from primary or metastatic bone cancer and profoundly compromises the quality of life. Emerging evidence indicates that the dorsal root ganglion play an integral role in the modulation of pain hypersensitivity. However, the underlying molecular mechanisms during dorsal root ganglion-mediated bone cancer pain remain elusive. In this study, RNA-sequencing was used to detect the differentially expressed genes in dorsal root ganglion neurons of a rat bone cancer pain model established by intratibial inoculation of Walker 256 breast cancer cells. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes (fold change > 1.5; false discovery rate < 0.05) were enriched in the bone morphogenetic protein (BMP) signaling pathway, transforming growth factor-β signaling pathway, and positive regulation of cartilage development. Importantly, serum deprivation-response protein ( Sdpr), hephaestin ( Heph), transthyretin ( Ttr), insulin receptor substrate 1 ( Irs1), connective tissue growth factor ( Ctgf ), and Bmp2 genes were associated with bone pain and degeneration. Of note, Bmp2, a pleiotropic and secreted molecule mediating pain and inflammation, was one of the most significantly upregulated genes in dorsal root ganglion neurons in this bone cancer pain model. Consistent with these data, upregulation of Bmp2 in the bone cancer pain model was validated by immunohistochemistry, real-time quantitative polymerase chain reaction, and western blotting. Importantly, intrathecal administration of siRNA significantly reduced Bmp2 transcription and ameliorated bone cancer pain in rat as shown by paw withdrawal mechanical threshold and spontaneous and movement-evoked pain-like behaviors. In conclusion, we have characterized the comprehensive gene expression profile of dorsal root ganglion from a bone cancer pain rat model by RNA-sequencing and identified Bmp2 as a potential therapeutic target for bone cancer pain treatment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.