• Journal of neurosurgery · Feb 2020

    Incidence, classification, and treatment of angiographically occult intracranial aneurysms found during microsurgical aneurysm clipping of known aneurysms.

    • Jan-Karl Burkhardt, Michelle H Chua, Ethan A Winkler, W Caleb Rutledge, and Michael T Lawton.
    • Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona; and.
    • J. Neurosurg. 2020 Feb 1; 132 (2): 434441434-441.

    ObjectiveDuring the microsurgical clipping of known aneurysms, angiographically occult (AO) aneurysms are sometimes found and treated simultaneously to prevent their growth and protect the patient from future rupture or reoperation. The authors analyzed the incidence, treatment, and outcomes associated with AO aneurysms to determine whether limited surgical exploration around the known aneurysm was safe and justified given the known limitations of diagnostic angiography.MethodsAn AO aneurysm was defined as a saccular aneurysm detected using the operative microscope during dissection of a known aneurysm, and not detected on preoperative catheter angiography. A prospective database was retrospectively reviewed to identify patients with AO aneurysms treated microsurgically over a 20-year period.ResultsOne hundred fifteen AO aneurysms (4.0%) were identified during 2867 distinct craniotomies for aneurysm clipping. The most common locations for AO aneurysms were the middle cerebral artery (60 aneurysms, 54.1%) and the anterior cerebral artery (20 aneurysms, 18.0%). Fifty-six AO aneurysms (50.5%) were located on the same artery as the known saccular aneurysm. Most AO aneurysms (95.5%) were clipped and there was no attributed morbidity. The most common causes of failed angiographic detection were superimposition of a large aneurysm (type 1, 30.6%), a small aneurysm (type 2, 18.9%), or an adjacent normal artery (type 3, 36.9%). Multivariate analysis identified multiple known aneurysms (odds ratio [OR] 3.45, 95% confidence interval [CI] 2.16-5.49, p < 0.0001) and young age (OR 0.981, 95% CI 0.965-0.997, p = 0.0226) as independent predictors of AO aneurysms.ConclusionsMeticulous inspection of common aneurysm sites within the surgical field will identify AO aneurysms during microsurgical dissection of another known aneurysm. Simultaneous identification and treatment of these additional undiagnosed aneurysms can spare patients later rupture or reoperation, particularly in those with multiple known aneurysms and a history of subarachnoid hemorrhage. Limited microsurgical exploration around a known aneurysm can be performed safely without additional morbidity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.