-
- Gustav Burström, Rami Nachabe, Oscar Persson, Erik Edström, and Elmi Terander Adrian A Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. De.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Spine. 2019 Aug 1; 44 (15): 1097-1104.
Study DesignCadaveric animal laboratory study.ObjectiveTo evaluate the feasibility and accuracy of pedicle cannulation using an augmented reality surgical navigation (ARSN) system with automatic instrument tracking, yielding feedback of instrument position in relation to deep anatomy.Summary Of Background DataMinimally invasive spine surgery (MISS) has the possibility of reducing surgical exposure resulting in shorter hospital stays, lower blood loss and infection rates compared with open surgery but the drawback of limiting visual feedback to the surgeon regarding deep anatomy. MISS is mainly performed using image-guided 2D fluoroscopy, thus exposing the staff to ionizing radiation.MethodsA hybrid operating room (OR) equipped with a robotic C-arm with integrated optical cameras for augmented reality instrument navigation was used. In two pig cadavers, cone beam computed tomography (CBCT) scans were performed, a 3D model generated, and pedicle screw insertions were planned. Seventy-eight insertions were performed. Technical accuracy was assessed on post-insertion CBCTs by measuring the distance between the navigated device and the corresponding pre-planned path as well as the angular deviations. Drilling and hammering into the pedicle were also compared. Navigation time was measured. An independent reviewer assessed a simulated clinical accuracy according to Gertzbein.ResultsThe technical accuracy was 1.7 ± 1.0 mm at the bone entry point and 2.0 ± 1.3 mm at the device tip. The angular deviation was 1.7 ± 1.7° in the axial and 1.6 ± 1.2° in the sagittal plane. Navigation time per insertion was 195 ± 93 seconds. There was no difference in accuracy between hammering and drilling into the pedicle. The clinical accuracy was 97.4% to 100% depending on the screw size considered for placement. No ionizing radiation was used during navigation.ConclusionARSN with instrument tracking for MISS is feasible, accurate, and radiation-free during navigation.Level Of Evidence3.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.