• Ultrasound Med Biol · Aug 2009

    Blood-brain barrier (BBB) disruption using a diagnostic ultrasound scanner and Definity in Mice.

    • Kristin Frinkley Bing, Gabriel P Howles, Yi Qi, Mark L Palmeri, and Kathryn R Nightingale.
    • Department of Biomedical Engineering, Duke University, Durham, NC 27708. , USA. kdf2@duke.edu
    • Ultrasound Med Biol. 2009 Aug 1; 35 (8): 1298-308.

    AbstractThe objective of this work was to determine whether diagnostic ultrasound and contrast agent could be used to transcranially and nondestructively disrupt the blood-brain barrier (BBB) in mice under ultrasound image guidance and to quantify that disruption using magnetic resonance imaging (MRI) and magnetic resonance (MR) contrast agent. Each mouse was placed under isoflurane anesthesia and the hair on top of its skull was removed before treatment. A diagnostic ultrasound transducer was placed in a water bag coupled with gel on the mouse skull. Definity (ultrasound [US] contrast) and Magnevist (MR contrast) were injected concurrent with the start of a custom ultrasound transmission sequence. The transducer was translated along the rostral-caudal axis to insonify three spatial locations (2mm apart) along one half of the brain for each sequence. T1-weighted MR images were used to quantify the volume of tissue over which the BBB disruption allowed Magnevist to enter the brain, based upon increases in MR contrast-to-noise ratio (CNR) compared with the noninsonified portions of the brain. Ultrasonic frequency, pressure and pulse duration, as well as Definity dose and injection time were varied. Preliminary results suggest that a threshold exists for BBB opening dependent upon both pressure and pulse duration (consistent with reports in the literature performed at lower frequencies). A range of typical diagnostic frequencies (e.g., 5.0-8.0 MHz) generated BBB disruption. Comparable BBB opening was noted with varied delays between Definity injection and insonification (0-2 min) for a range of Definity concentrations (400-2400 microL/kg). The low-pressure, custom sequences (mechanical index [MI]< or =0.65) had minimal blood cell extravasation as determined by histologic evaluation. This study has shown the ability of a diagnostic ultrasound system, in conjunction with Definity, to open the BBB transcranially in a mouse model for molecules approximately 0.5 kDa in size. Opening was achieved at higher frequencies than previously reported and was localized under ultrasound image guidance. A typical, ultrasound imaging mode (pulsed wave [PW] Doppler) with specific settings (transmit frequency=5.7 MHz, gate size=15 mm, pulse repetition frequency=100 Hz, system power=15%) successfully opened the BBB, which facilitates implementation using the most of commercially available clinical diagnostic scanners. Localized opening of the BBB may have potential clinical utility for the delivery of diagnostic or therapeutic agents to the brain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.