• Anesthesiology · May 2019

    Extracellular Vesicles from Interferon-γ-primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce Escherichia coli-induced Acute Lung Injury in Rats.

    • Amir K Varkouhi, Mirjana Jerkic, Lindsay Ormesher, Stéphane Gagnon, Sakshi Goyal, Razieh Rabani, Claire Masterson, Chris Spring, Paul Z Chen, Frank X Gu, Claudia C Dos Santos, Gerard F Curley, and John G Laffey.
    • From the Keenan Research Centre for Biomedical Science (A.K.V., M.J., L.O., S. Gagnon, S. Goyal, R.R., C.M., C.S., C.C.d.S., G.F.C., J.G.L.) Interdepartmental Division of Critical Care Medicine and Department of Critical Care (C.C.d.S., G.F.C., J.G.L.) Department of Anesthesia (G.F.C., J.G.L.), St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada Department of Chemical Engineering and Applied Chemistry (F.X.G.), University of Toronto, Toronto, Ontario, Canada Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada (P.Z.C., F.X.G.) Department of Anesthesia, Royal College of Surgeons in Ireland, Dublin, Ireland (G.F.C.) Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland (J.G.L.).
    • Anesthesiology. 2019 May 1; 130 (5): 778-790.

    BackgroundHuman umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ-primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell-derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia.MethodsIn a university laboratory, anesthetized adult male Sprague-Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 10 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell-derived extracellular vesicles, (b) naïve mesenchymal stromal cell-derived extracellular vesicles (both 100 million mesenchymal stromal cell-derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell-derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing.ResultsSurvival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell-derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles reduced alveolar-arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/β-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell-derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle.ConclusionsExtracellular vesicles from interferon-γ-primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli-induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.