• Resuscitation · May 2019

    Value of capnography to predict defibrillation success in out-of-hospital cardiac arrest.

    • Beatriz Chicote, Elisabete Aramendi, Unai Irusta, Pamela Owens, Mohamud Daya, and Ahamed Idris.
    • Communications Engineering Department, University of the Basque Country UPV/EHU, Ingeniero Torres Quevedo Plaza, 1, 48013 Bilbao, Spain. Electronic address: beatriz.chicote@ehu.eus.
    • Resuscitation. 2019 May 1; 138: 748174-81.

    Background And AimUnsuccessful defibrillation shocks adversely affect survival from out-of-hospital cardiac arrest (OHCA). Ventricular fibrillation (VF) waveform analysis is the tool-of-choice for the non-invasive prediction of shock success, but surrogate markers of perfusion like end-tidal CO2 (EtCO2) could improve the prediction. The aim of this study was to evaluate EtCO2 as predictor of shock success, both individually and in combination with VF-waveform analysis.Materials And MethodsIn total 514 shocks from 214 OHCA patients (75 first shocks) were analysed. For each shock three predictors of defibrillation success were automatically calculated from the device files: two VF-waveform features, amplitude spectrum area (AMSA) and fuzzy entropy (FuzzyEn), and the median EtCO2 (MEtCO2) in the minute before the shock. Sensitivity, specificity, receiver operating characteristic (ROC) curves and area under the curve (AUC) were calculated, for each predictor individually and for the combination of MEtCO2 and VF-waveform predictors. Separate analyses were done for first shocks and all shocks.ResultsMEtCO2 in first shocks was significantly higher for successful than for unsuccessful shocks (31mmHg/25mmHg, p<0.05), but differences were not significant for all shocks (32mmHg/29mmHg, p>0.05). MEtCO2 predicted shock success with an AUC of 0.66 for first shocks, but was not a predictor for all shocks (AUC 0.54). AMSA and FuzzyEn presented AUCs of 0.76 and 0.77 for first shocks, and 0.75 and 0.75 for all shocks. For first shocks, adding MEtCO2 improved the AUC of AMSA and FuzzyEn to 0.79 and 0.83, respectively.ConclusionsMEtCO2 predicted defibrillation success only for first shocks. Adding MEtCO2 to VF-waveform analysis in first shocks improved prediction of shock success. VF-waveform features and MEtCO2 were automatically calculated from the device files, so these methods could be introduced in current defibrillators adding only new software.Copyright © 2019 Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…