-
Journal of neurotrauma · Nov 2020
Multidimensional mapping of brain-derived extracellular vesicle (EV) miRNA biomarker for traumatic brain injury diagnostics.
- Jina Ko, Matthew Hemphill, Zijian Yang, Kryshawna Beard, Emily Sewell, Jamie Shallcross, Melissa Schweizer, Danielle K Sandsmark, Ramon Diaz-Arrastia, Junhyong Kim, David Meaney, and David Issadore.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- J. Neurotrauma. 2020 Nov 15; 37 (22): 242424342424-2434.
AbstractThe diagnosis and prognosis of traumatic brain injury (TBI) is complicated by variability in the type and severity of injuries and the multiple endophenotypes that describe each patient's response and recovery to the injury. It has been challenging to capture the multiple dimensions that describe an injury and its recovery to provide clinically useful information. To address this challenge, we have performed an open-ended search for panels of microRNA (miRNA) biomarkers, packaged inside of brain-derived extracellular vesicles (EVs), that can be combined algorithmically to accurately classify various states of injury. We mapped GluR2+ EV miRNA across a variety of injury types, injury intensities, history of injuries, and time elapsed after injury, and sham controls in a pre-clinical murine model (n = 116), as well as in clinical samples (n = 36). We combined next-generation sequencing with a technology recently developed by our lab, Track Etched Magnetic Nanopore (TENPO) sorting, to enrich for GluR2+ EVs and profile their miRNA. By mapping and comparing brain-derived EV miRNA between various injuries, we have identified signaling pathways in the packaged miRNA that connect these biomarkers to underlying mechanisms of TBI. Many of these pathways are shared between the pre-clinical model and the clinical samples, and present distinct signatures across different injury models and times elapsed after injury. Using this map of EV miRNA, we applied machine learning to define a panel of biomarkers to successfully classify specific states of injury, paving the way for a prognostic blood test for TBI. We generated a panel of eight miRNAs (miR-150-5p, miR-669c-5p, miR-488-3p, miR-22-5p, miR-9-5p, miR-6236, miR-219a.2-3p, miR-351-3p) for injured mice versus sham mice and four miRNAs (miR-203b-5p, miR-203a-3p, miR-206, miR-185-5p) for TBI patients versus healthy controls.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.