• World Neurosurg · Jul 2019

    Machine Learning For The Prediction Of Cervical Spondylotic Myelopathy: A Post Hoc Pilot Study Of 28 Participants.

    • Benjamin S Hopkins, Kenneth A Weber, Kartik Kesavabhotla, Monica Paliwal, Donald R Cantrell, and Zachary A Smith.
    • Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
    • World Neurosurg. 2019 Jul 1; 127: e436-e442.

    BackgroundCervical spondylotic myelopathy (CSM) severity and presence of symptoms are often difficult to predict based simply on clinical imaging alone. Similarly, improved machine learning techniques provide new tools with immense clinical potential.MethodsA total of 14 patients with CSM and 14 controls underwent imaging of the cervical spine. Two different artificial neural network models were trained; 1) to predict CSM diagnosis; and 2) to predict CSM severity. Model 1 consisted of 6 inputs including 3 common imaging scales for the evaluation of cord compression, alongside 3 objective magnetic resonance imaging measurements. The outcome for model 1 was binary to predict CSM diagnosis. Model 2 consisted of 23 input variables derived from probabilistic volume mapping measurements of white matter tracts in the region of compression. The outcome of model 2 was linear, to predict the modified Japanese Orthopedic Association (mJOA) score.ResultsModel 1 was used in predicting CSM. The mean cross-validated accuracy of the trained model was 86.50% (95% confidence interval, 85.16%-87.83%) with a median accuracy of 90.00%. Area under the curve (AUC) was calculated for each repetition. Average AUC for each repetition was 0.947 with a median AUC of 1.0. Average sensitivity, specificity, positive predictive value, and negative predictive value were 90.25%, 85.05%, 81.58%, and 91.94%, respectively. Model 2 was used in modeling mJOA. The mJOA model predicted scores, with a mean and median error of -0.29 mJOA points and -0.08 mJOA points, respectively, mean error per batch was 0.714 mJOA points.ConclusionsMachine learning provides a promising method for prediction, diagnosis, and even prognosis in patients with CSM.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…