• Pain Med · Dec 2019

    Review

    A Bioinformatic Analysis of MicroRNAs' Role in Human Intervertebral Disc Degeneration.

    • Xue-Qiang Wang, Wen-Zhan Tu, Jia-Bao Guo, Ge Song, Juan Zhang, Chang-Cheng Chen, and Pei-Jie Chen.
    • Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
    • Pain Med. 2019 Dec 1; 20 (12): 2459-2471.

    AbstractObjectives The aim of our study was to ascertain the underlying role of microRNAs (miRNAs) in human intervertebral disc degeneration (IDD). Design Bioinformatic analysis from multiple databases. Methods Studies of the association of miRNAs and IDD were identified in multiple electronic databases. All potential studies were assessed by the same inclusion and exclusion criteria. We recorded whether miRNA expression was commonly increased or suppressed in the intervertebral disc tissues and cells of IDD subjects. We used String to identify biological process and cellular component pathways of differentially expressed genes. Results We included fifty-seven articles from 1,277 records in this study. This report identified 40 different dysregulated miRNAs in 53 studies, including studies examining cell apoptosis (26 studies, 49.06%), cell proliferation (15 studies, 28.3%), extracellular matrix (ECM) degradation (10 studies, 18.86%), and inflammation (five studies, 9.43%) in IDD patients. Three upregulated miRNAs (miR-19b, miR-32, miR-130b) and three downregulated miRNAs (miR-31, miR-124a, miR-127-5p) were considered common miRNAs in IDD tissues. The top three biological process pathways for upregulated miRNAs were positive regulation of biological process, nervous system development, and negative regulation of biological process, and the top three biological process pathways for downregulated miRNAs were negative regulation of gene expression, intracellular signal transduction, and negative regulation of biological process. Conclusions This study revealed that miRNAs could be novel targets for preventing IDD and treating patients with IDD by regulating their target genes. These results provide valuable information for medical professionals, IDD patients, and health care policy makers.© 2019 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.