• J Clin Monit Comput · Apr 2020

    Monitoring the level of hypnosis using a hierarchical SVM system.

    • Ahmad Shalbaf, Reza Shalbaf, Mohsen Saffar, and Jamie Sleigh.
    • Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. shalbaf@iust.ac.ir.
    • J Clin Monit Comput. 2020 Apr 1; 34 (2): 331338331-338.

    AbstractMonitoring level of hypnosis is a major ongoing challenge for anesthetists to reduce anesthetic drug consumption, avoiding intraoperative awareness and prolonged recovery. This paper proposes a novel automated method for accurate assessing of the level of hypnosis with sevoflurane in 17 patients using the electroencephalogram signal. In this method, a set of distinctive features and a hierarchical classification structure based on support vector machine (SVM) methods, is proposed to discriminate the four levels of anesthesia (awake, light, general and deep states). The first stage of the hierarchical SVM structure identifies the awake state by extracting Shannon Permutation Entropy, Detrended Fluctuation Analysis and frequency features. Then deep state is identified by extracting the sample entropy feature; and finally light and general states are identified by extracting the three mentioned features of the first step. The accuracy of the proposed method of analyzing the brain activity during anesthesia is 94.11%; which was better than previous studies and also a commercial monitoring system (Response Entropy Index).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…