• Int. J. Mol. Med. · Oct 2016

    Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis.

    • Xiaoxia Sun, Hong Zuo, Chunmei Liu, and Yafeng Yang.
    • Department of Cardiology 3, Xianyang Central Hospital, Xianyang, Shaanxi 712000, P.R. China.
    • Int. J. Mol. Med. 2016 Oct 1; 38 (4): 1303-11.

    AbstractThe kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis plays an important role in regulating oxidative stress in ischemic cardiomyocytes. Targeting Keap1 in order to promote Nrf2 activation is considered a potential method for protecting cardiomyocytes against ischemic injury. In recent years, microRNAs (miRNAs or miRs) have emerged as powerful tools for controlling gene expression. The present study aimed to determine whether Keap1-Nrf2 was regulated by specific miRNAs in cardiomyocytes under hypoxic conditions. We demonstrated that miR-200a was significantly downregulated in ischemic myocardial tissues and hypoxic cardiomyocytes. The overexpression of miR-200a was found to protect cardiomyocytes from hypoxia-induced cell damage and the excessive production of reactive oxygen species. Through bioinformatics analysis and a dual-luciferase report assay, miR-200a was found to interact with the 3'-untranslated region of Keap1, the native regulator of Nrf2. Reverse transcription-quantitative polymerase chain reaction and western blot analysis revealed that miR-200a negatively regulated the expression of Keap1. The overexpression of miR-200a significantly increased the nuclear translocation of Nrf2 as well as downstream antioxidant enzyme gene expression. The inhibition of miR-200a displayed the opposite effects. Restoring the expression of Keap1 significantly abrogated the protective effect of miR‑200a. Taken together, these findings indicate that the suppression of Keap1 by miR-200a exerted a cardioprotective effect against hypoxia-induced oxidative stress and cell apoptosis, and suggest that the activation of Nrf2 signaling by miR‑200a represents a novel and promising therapeutic strategy for the treatment of ischemic heart disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.