• Journal of neurochemistry · Sep 2001

    Distinct signal transduction pathways for GABA-induced GABA(A) receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels.

    • H R Lyons, M B Land, T T Gibbs, and D H Farb.
    • Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
    • J. Neurochem. 2001 Sep 1; 78 (5): 1114-26.

    AbstractChanges in GABA receptor (GABA(A)R) gene expression are detected in animal models of epilepsy, anxiety and in post-mortem schizophrenic brain, suggesting a role for GABA(A)R regulation in neurological disorders. Persistent (48 h) exposure of brain neurons in culture to GABA results in down-regulation of GABA(A)R number and uncoupling of GABA and benzodiazepine (BZD) binding sites. Given the central role of GABA(A)Rs in fast inhibitory synaptic transmission, GABA(A)R down-regulation and uncoupling are potentially important mechanisms of regulating neuronal excitability, yet the molecular mechanisms remain unknown. In this report we show that treatment of brain neurons in culture with tetrodotoxin, glutamate receptor antagonists, or depolarization with 25 mM K(+) fails to alter GABA(A)R number or coupling. Changes in neuronal activity or membrane potential are therefore not sufficient to induce either GABA(A)R down-regulation or uncoupling. Nifedipine, a voltage-gated Ca(2+) channel (VGCC) blocker, inhibits both GABA-induced increases in [Ca(2+)](i) and GABA(A)R down-regulation, suggesting that VGCC activation is required for GABA(A)R down-regulation. Depolarization with 25 mM K(+) produces a sustained increase in intracellular [Ca(2+)] without causing GABA(A)R down-regulation, suggesting that activation of VGCCs is not sufficient to produce GABA(A)R down-regulation. In contrast to GABA(A)R down-regulation, nifedipine and 25 mM K(+) fail to inhibit GABA-induced uncoupling, demonstrating that GABA-induced GABA(A)R down-regulation and uncoupling are mediated by independent molecular events. Therefore, GABA(A)R activation initiates at least two distinct signal transduction pathways, one of which involves elevation of intracellular [Ca(2+)] through VGCCs.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…