• Journal of neurotrauma · Jun 2018

    Chloroquine Promotes the Recovery of Acute Spinal Cord Injury by Inhibiting Autophagy-Associated Inflammation and Endoplasmic Reticulum Stress.

    • Fenzan Wu, Xiaojie Wei, Yanqing Wu, Xiaoxia Kong, Aiping Hu, Songlin Tong, Yanlong Liu, Fanhua Gong, Ling Xie, Jinjing Zhang, Jian Xiao, and Hongyu Zhang.
    • 1 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University , Wenzhou, China .
    • J. Neurotrauma. 2018 Jun 15; 35 (12): 1329-1344.

    AbstractSpinal cord injury (SCI) is a severe nervous system disease that may lead to lifelong disability. Studies have shown that autophagy plays a key role in various diseases; however, the mechanisms regulating cross-talk between autophagy, inflammation, and endoplasmic reticulum (ER) stress during SCI recovery remain unclear. This study was designed to investigate the mechanism by which chloroquine (CQ) inhibits autophagy-associated inflammation and ER stress in rats during their recovery from acute SCI. We evaluated the locomotor function, level of autophagy, and levels of inflammatory cytokines and ER-stress-associated proteins and examined the degradation of the key regulator of inflammation inhibitor of kappa B alpha (I-κBα) through autophagy by analyzing the colocalization of I-κBα, p62, and microtubule-associated protein 1 light chain 3-II. In addition, overexpression of the p62 and activating transcription factor 4 (ATF4) silencing plasmids was used to verify the important roles for autophagic degradation and ER stress. In this study, locomotor function is improved, and autophagy and inflammation are significantly inhibited by, CQ treatment in the model rats. In addition, CQ significantly inhibits the degradation of ubiquitinated I-κBα and blocks the nuclear translocation of nuclear factor kappa B p65 and expression of inflammatory factors. Overexpression of p62 increases I-κBα degradation and improves inflammatory responses. Moreover, CQ treatment also inhibits the activation of ER stress in the rat SCI model, and the ATF4 signaling pathway is required for ER-stress-induced activation of autophagy. These findings reveal a novel mechanism underlying the beneficial effects of CQ on the recovery of SCI, particularly the mechanisms regulating cross-talk between autophagy, inflammation, and ER stress.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.