-
- Srinidhi Nagaraja, Hassan K Awada, Maureen L Dreher, John T Bouck, and Shikha Gupta.
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Solid and Fluid Mechanics, Silver Spring, Maryland.
- J Neurosurg Spine. 2015 Mar 1; 22 (3): 273-82.
ObjectThe aim in this study was to quantify the effects of vertebroplasty on endplate subsidence in treated and adjacent vertebrae and their relationship to endplate thickness and underlying trabecular bone in elderly female spines.MethodsVertebral compression fractures were created in female cadaveric (age range 51-88 years) thoracolumbar spine segments. Specimens were placed into either the control or vertebroplasty group (n = 9/group) such that bone mineral density, trabecular microarchitecture, and age were statistically similar between groups. For the vertebroplasty group, polymethylmethacrylate bone cement was injected into the fractured vertebral body under fluoroscopy. Cyclic compression (685-1370 N sinusoid) was performed on all spine segments for 115,000 cycles. Micro-CT scans were obtained before and after cyclic loading to quantify endplate subsidence. Maximum subsidence was compared between groups in the caudal endplate of the superior adjacent vertebra (SVcau); cranial (TVcra) and caudal (TVcau) endplates of the treated vertebra; and the cranial endplate of the inferior adjacent vertebra (IVcra). In addition, micro-CT images were used to quantify average endplate thickness and trabecular bone volume fraction. These parameters were then correlated with maximum endplate subsidence for each endplate.ResultsThe maximum subsidence in SVcau endplate for the vertebroplasty group (0.34 ± 0.58 mm) was significantly (p < 0.05) greater than for the control group (-0.13 ± 0.27 mm). Maximum subsidence in the TVcra, TVcau, and IVcra endplates were greater in the vertebroplasty group, but these differences were not significant (p > 0.16). Increased subsidence in the vertebroplasty group manifested locally in the anterior region of the SVcau endplate and in the posterior region of the TVcra and TVcau endplates (p < 0.10). Increased subsidence was observed in thinner endplates with lower trabecular bone volume fraction for both vertebroplasty and control groups (R(2) correlation up to 62%). In the SVcau endplate specifically, these 2 covariates aided in understanding subsidence differences between vertebroplasty and control groups.ConclusionsBone cement injected during vertebroplasty alters local biomechanics in elderly female spines, resulting in increased endplate disruption in treated and superior adjacent vertebrae. More specifically, bone cement increases subsidence in the posterior regions of the treated endplates and the anterior region of the superior caudal endplate. This increased subsidence may be the initial mechanism leading to subsequent compression fractures after vertebroplasty, particularly in vertebrae superior to the treated level.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.