-
Minerva anestesiologica · Aug 2019
An in-vitro study to evaluate high-volume low-pressure endotracheal tube cuff deflation dynamics.
- Joan D Marti, Gianluigi Li Bassi, Valentina Isetta, Miguel R Lazaro, Eli Aguilera-Xiol, Talitha Comaru, Denise Battaglini, Andrea Meli, Miguel Ferrer, Daniel Navajas, Paolo Pelosi, Davide Chiumello, Antoni Torres, and Ramon Farre.
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Clinical Hospital, Barcelona, Spain.
- Minerva Anestesiol. 2019 Aug 1; 85 (8): 846-853.
BackgroundHigh-volume low-pressure (HVLP) endotracheal tube (ETT) cuffs for critically ill patients often deflate during the course of mechanical ventilation. We performed an in-vitro study to comprehensively assess HVLP cuff deflation dynamics and potential preventive measures.MethodsWe evaluated 24-hour deflation of seven HVLP cuffs of cylindrical or tapered shape, and made of polyvinylchloride or polyurethane. Experiments were performed within a thermostated chamber set at 37 °C. In the first stage of experiments, the cuff pilot balloon valve was not manipulated. The cuff internal pressure was assessed hourly for 24 hours, via a linear position sensor which monitored cuff deflation displacements. Then, we re-evaluated cuff deflation of the worst-performing ETT cuffs with the cuff pilot balloon valve sealed. Finally, we inflated ETT cuffs within an artificial trachea to evaluate deflation dynamics during mechanical ventilation.ResultsInitial tests showed an exponential decrease in cuff internal pressure in five out of seven cuffs. Cuffs of cylindrical shape and made of polyurethane demonstrated the fastest deflation rates (P<0.050 vs. cuffs of conical shape and made of polyvinylchloride). When the cuff pilot balloon valve was not sealed, the internal cuff pressure deflation rate differed significantly among ETTs (P=0.005). Yet, upon sealing the cuff pilot balloon valve and during mechanical ventilation, cuff deflation rates decreased (P<0.050).ConclusionsIn controlled in-vitro settings, ETT cuffs consistently deflate over time, and the cuff pilot balloon valve plays a central role in this occurrence. Deflation rate decreases when cuffs are inflated within a plastic artificial tracheal model and mechanical ventilation is activated.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.