• Am J Emerg Med · Jan 2020

    Cardiopulmonary resuscitation ameliorates myocardial mitochondrial dysfunction in a cardiac arrest rat model.

    • Wen Xu, Yue Fu, Longyuan Jiang, Zhengfei Yang, Yue Wang, Wanchun Tang, and Xiangshao Fang.
    • Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
    • Am J Emerg Med. 2020 Jan 1; 38 (1): 65-72.

    PurposePrevious studies implicate that the mitochondrial injury may play an important role in the development of post-resuscitation myocardial dysfunction, however few of them are available regarding the ultrastructural alterations of myocardial mitochondria, mitochondrial energy producing and utilization ability in the stage of arrest time (no-low) and resuscitation time (low-flow). This study aimed to observe the dynamic changes of myocardial mitochondrial function and metabolic disorders during cardiac arrest (CA) and following cardiopulmonary resuscitation (CPR).MethodsA total of 30 healthy male Sprague-Dawley rats were randomized into three groups: 1) VF/CPR: Ventricular fibrillation (VF) was electrically induced, and 5 min of CPR was performed after 10 min of untreated VF; 2) Untreated VF: VF was induced and untreated for 15 min; and 3) Sham: Rats were identically prepared without VF/CPR. Amplitude spectrum area (AMSA) at VF 5, 10 and 15 min were calculated from ECG signals. The rats' hearts were quickly removed at the predetermined time of 15 min after beginning the procedure to gather measurements of myocardial mitochondrial function, high-energy phosphate stores, lactate, mitochondrial ultrastructure, and myocardial glycogen.ResultsThe mitochondrial respiratory control ratios significantly decreased after CA compared to sham group. CPR significantly increased respiratory control ratios compared with untreated VF animals. A significant decrease of myocardial glycogen was observed after CA, and a more rapid depletion of myocardial glycogen was observed in CPR animals. CPR significantly reduced the tissue lactate. The mitochondrial ultrastructure abnormalities in CPR animals were less severe than untreated VF animals. AMSA decayed during untreated VF; however, it was significantly greater in CPR group than the untreated VF group. In addition, AMSA was clearly positively correlated with ATP, but negatively correlated with myocardial glycogen.ConclusionImpairment of myocardial mitochondrial function and the incapability of utilizing glycogen were observed after CA. Furthermore, optimal CPR might, in part, preserved mitochondrial function and enhanced utilization of myocardial glycogen.Copyright © 2019. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.