-
- Ranliang Hu, Deqiang Qiu, Ying Guo, Yujie Zhao, Christopher Leatherday, Junjie Wu, and Jason W Allen.
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
- J Neuroimaging. 2019 May 1; 29 (3): 344347344-347.
Background And PurposeGraph theory analysis of brain connectivity data is a promising tool for studying the function of the healthy and diseased brain. The consistency of resting-state functional MRI (rsfMRI) connectivity measures across multiple scanner types is an important factor in designing multi-institutional research studies and has important implications for the potential use of this technique in a heterogeneous clinical setting. We sought to quantitatively study the interscanner variability of rsfMRI graph theory metrics obtained from healthy volunteers scanned on three different scanner platforms.MethodsIn this prospective Institutional Review Board approved study, 9 healthy volunteers were enrolled for brain MRI on three 3T scanners (Magnetom Prisma, Skyra, and Trio, Siemens, Erlangen, Germany) in three separate scan sessions within approximately 1 week. Standard preprocessing of rsfMRI was performed with SPM12. Subject scans were normalized to Montreal Neurologic Institute (MNI) space, and connectivity of 116 regions-of-interests based on the automated anatomic labeling (AAL) atlas was calculated using Conn toolbox. Whole-network graph theory metrics were calculated using Brain Connectivity Toolbox, and intraclass correlation (ICC) across three scan sessions was assessed.ResultsA total of 25 rsfMRI exams were completed in 9 subjects with a median-intersession time of 3 days. Among all three sessions, there was good to excellent agreement in characteristic path length and global efficiency (ICC: .79, .79) and good agreement in the transitivity, local efficiency, and clustering coefficient (ICC = .72, .69, .62).ConclusionsThere was high consistency of graph theory metrics of rsfMRI connectivity networks among healthy volunteers scanned on three different generation 3T MRI scanners.© 2019 by the American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.