• IEEE Trans Neural Syst Rehabil Eng · Oct 2017

    Epidural Stimulation of Rat Spinal Cord at Lumbosacral Segment Using a Surface Electrode: A Computer Simulation Study.

    • Qi Xu, Li Kong, Hui Zhou, and Jiping He.
    • IEEE Trans Neural Syst Rehabil Eng. 2017 Oct 1; 25 (10): 1763-1772.

    AbstractClinical research indicates that the epidural spinal cord stimulation (ESCS) at lumbosacral segment has shown potential for promoting locomotor recovery in patients with incomplete spinal cord injury. However, the underlying neural mechanism needs to be determined by animal experiments. In order to refine experimental protocols, we used a finite element simulation to investigate the activation of nerve fibers in a rat spinal cord model. Our model is composed of a volume conductor model from L1 to S2 spinal segments and the McIntyre-Richard-Grill axon model, which is used to investigate the threshold of selected spinal fibers with different diameters at varied locations and predict the neural responses of any target fibers with bipolar electrode configuration. Mathematical modeling suggests that the electrode-fiber distance may play an important role in the recruitment of nerve fibers, whereas longer pulse width predicted greater activity of spinal root fibers and dorsal column fibers, as well as may exert an effective influence on the motor system by the ability to increase and even "steer" spatial selectivity with deeper penetration into the dorsal columns. The spikes were initiated at sites along the nerve fibers depending on which component was closest to the cathode among the longitudinal part of the fiber, its entrance into spinal cord, or strong bending at the entry. Our simulation results show good agreement with the previous findings from animal studies. It is concluded that the computational ESCS model is a valuable tool to obtain a better insight into the immediately evoked electrophysiological phenomena in animal models, and provides further guidelines for conducting animal experiments to enhance the exploration of basic neural mechanisms.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.