• Neuromodulation · Jan 2020

    Effects of Phase Polarity and Charge Balance Spinal Cord Stimulation on Behavior and Gene Expression in a Rat Model of Neuropathic Pain.

    • Ricardo Vallejo, Ashim Gupta, Courtney A Kelley, Alejandro Vallejo, Jonathan Rink, Joseph M Williams, Cynthia L Cass, William J Smith, Ramsin Benyamin, and David L Cedeño.
    • Millennium Pain Center, Bloomington, IL, USA.
    • Neuromodulation. 2020 Jan 1; 23 (1): 26-35.

    ObjectiveTo investigate the effect of phase polarity and charge balance of spinal cord stimulation (SCS) waveforms on pain behavior and gene expression in a neuropathic pain rodent model. We hypothesized that differing waveforms will result in diverse behavioral and transcriptomics expression due to unique mechanisms of action.Materials And MethodsRats were implanted with a four-contact cylindrical mini-lead and randomly assigned to two control (no-pain and pain model) and five test groups featuring monophasic, as well as charge-unbalanced and charge-balanced biphasic SCS waveforms. Mechanical and cold allodynia were assessed to measure efficacy. The ipsilateral dorsal quadrant of spinal cord adjacent to the lead was harvested post-stimulation and processed to determine gene expression via real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Gene expression, SCS intensity (mA), and behavioral score as percent of baseline (BSPB) were statistically analyzed and used to generate correlograms using R-Studio. Statistical analysis was performed using SPSS22.0, and p < 0.05 was considered significant.ResultsAs expected, BSPB was significantly lower for the pain model group compared to the no-pain group. BSPB was significantly improved post-stim compared to pre-stim using cathodic, anodic, symmetric biphasic, or asymmetric biphasic 1:2 waveforms; however, BSPB was not restored to Sham levels. RT-PCR analysis showed that eight genes demonstrated a significant difference between the pain model and SCS waveforms and between waveforms. Correlograms reveal a linear correlation between regulation of expression of a given gene in relation to mA, BSPB, or other genes.ConclusionsOur results exhibit that specific SCS waveforms differentially modulate several key transcriptional pathways that are relevant in chronic pain conditions. These results have significant implications for SCS: whether to move beyond traditional paradigm of neuronal activation to focus also on modulating immune-driven processes.© 2019 International Neuromodulation Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…