-
Comparative Study
Correlation of hippocampal morphological changes and morris water maze performance after cortical contusion injury in rats.
- Fredrik Clausen, Anders Lewén, Niklas Marklund, Yngve Olsson, David L McArthur, and Lars Hillered.
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Sweden. Fredrik.clausen@neurokir.uu.se
- Neurosurgery. 2005 Jul 1; 57 (1): 154-63; discussion 154-63.
ObjectiveThe hippocampus is essential to the processing and formation of memory. This study analyzed the relationship among memory dysfunction as revealed by Morris water maze (MWM) trial, cortical lesion volume, and regional hippocampal morphological changes after controlled cortical contusion (CCC). We also analyzed the influence of pretreatment with the nitrone radical scavenger alpha-phenyl-N-tert-butyl-nitrone (PBN).MethodsRats were subjected to CCC. We used two levels of CCC (mild, 1.5 mm and severe, 2.5 mm) and pretreated some severely injured animals with PBN. The animals were killed 15 days postinjury. We evaluated morphological changes to the hippocampus semiquantitatively by scoring sections immunohistochemically stained for microtubule-associated protein 2 with a four-point scale for the cornu ammonis (CA) 1, CA2, CA3, and hilus of the dentate gyrus (HDG). The cortical lesion volume was quantified.ResultsRats subjected to severe, but not mild, CCC demonstrated impaired spatial learning ability in the MWM, but this impairment was attenuated with pretreatment with the radical scavenger PBN. We documented bilateral morphological changes in CA1, CA3, and HDG and an ipsilateral neocortical cavitation in severely injured rats. PBN treatment attenuated (P < 0.05) the morphological characteristics of abnormality in the ipsilateral CA1, CA2, HDG, and the contralateral HDG and reduced the cortical lesion volume. Mild injury led to minor ipsilateral hippocampal and cortical damage but no MWM deficiency. Hippocampal morphological scores and total mean latencies in the MWM task were strongly correlated (r = 0.69; P < 0.001). The correlation between the cortical lesion volume and MWM latency was weaker (r = 0.48; P = 0.02).ConclusionSevere CCC causes bilateral morphological changes in the hippocampus and ipsilateral neocortical cavitation, which correlate to impairment in a spatial learning task (MWM). PBN protected the structure of the CA2 ipsilaterally and HDG bilaterally and reduced the cortical lesion volume, correlating to improved functional outcome.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.