• J. Thorac. Cardiovasc. Surg. · Jun 1996

    Effects of cardiopulmonary bypass and circulatory arrest on endothelium-dependent vasodilation in the lung.

    • P M Kirshbom, M T Jacobs, S S Tsui, L R DiBernardo, D A Schwinn, R M Ungerleider, and J W Gaynor.
    • Department of Surgery, Duke University Medical Center, Durham, N.C., USA.
    • J. Thorac. Cardiovasc. Surg. 1996 Jun 1; 111 (6): 1248-56.

    AbstractEndothelial injury with failure of pulmonary endothelium-dependent vasodilatation has been proposed as a possible cause for the increased pulmonary vascular resistance observed after cardiopulmonary bypass, but the mechanisms underlying this response are not understood. An in vivo piglet model was used to investigate the role of endothelium-dependent vasodilatation in postbypass pulmonary hypertension. The pulmonary vascular responses to acetylcholine, a receptor-mediated endothelium-dependent vasodilator, and nitric oxide, an endothelium-independent vasodilator, were studied in one group of animals after preconstriction with the thromboxane A2 analog U46619 (n = 6); a second group was studied after bypass with 30 minutes of deep hypothermic circulatory arrest (n = 6). After preconstriction with U46619, both acetylcholine and nitric oxide caused significant decreases in pulmonary vascular resistance (34% +/- 6% decrease, p = 0.007, and 39% +/- 4% decrease, p = 0.001). After cardiopulmonary bypass with circulatory arrest, acetylcholine did not significantly change pulmonary vascular resistance (0% +/- 8% decrease, p = 1.0), whereas nitric oxide produced a 32% +/- 4% decrease in pulmonary vascular resistance (p = 0.007). These results demonstrate a loss of receptor-mediated endothelium-dependent vasodilatation with normal vascular smooth muscle function after circulatory arrest. Administration of the nitric oxide synthase blocker Ngamma-nitro-L-arginine-methyl-ester after circulatory arrest significantly increased pulmonary vascular resistance; thus, although endothelial cell production of nitric oxide may be diminished, it continues to be a major contributor to pulmonary vasomotor tone after cardiopulmonary bypass with deep hypothermic circulatory arrest. In summary, cardiopulmonary bypass with deep hypothermic circulatory arrest results in selective pulmonary endothelial cell dysfunction with loss of receptor-mediated endothelium-dependent vasodilatation despite preserved ability of the endothelium to produce nitric oxide and intact vascular smooth muscle function.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.