-
Investigative radiology · Mar 2016
Comparative Study18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma: Comparison With 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography and With the Addition of Magnetic Resonance Diffusion-Weighted Imaging.
- Chiara Giraudo, Markus Raderer, Georgios Karanikas, Michael Weber, Barbara Kiesewetter, Werner Dolak, Ingrid Simonitsch-Klupp, and Marius E Mayerhoefer.
- From the *Department of Biomedical Imaging and Image-guided Therapy, †Department of Internal Medicine I, ‡Department of Internal Medicine III, and §Institute of Pathology, Medical University of Vienna, Vienna, Austria.
- Invest Radiol. 2016 Mar 1; 51 (3): 163-9.
ObjectivesThe aim of this study was to compare F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes.Materials And MethodsPatients with histologically proven lymphoma were enrolled in this prospective, institutional review board-approved study. After a single F-FDG injection, patients consecutively underwent F-FDG PET[Fraction Slash]CT and F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: F-FDG PET/CT, F-FDG PET/MR without DWI, and F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for F-FDG PET/CT, F-FDG PET/MR without DWI, and F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on F-FDG PET/CT and F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean).ResultsThirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for F-FDG PET/CT, F-FDG PET/MR, and F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between F-FDG PET/MR DWI and F-FDG PET/CT, 99.2% (κ, 0.96) between F-FDG PET/MR and F-FDG PET/CT, and 99.4% (κ, 0.97) between F-FDG PET/MR DWI and F-FDG PET/MR. There was a strong correlation between F-FDG PET/CT and F-FDG PET/MR for SUVmax (r = 0.83) and SUVmean (r = 0.81) but no significant correlation between ADCmin and SUVmax (F-FDG PET/CT: r = 0.46, P = 0.65; F-FDG PET/MR: r = 0.64, P = 0.53) or between ADCmean and SUVmean (respectively, r = -0.14, P = 0.17 for the correlation with PET/CT and r = -0.14, P = 0.14 for the correlation with PET/MR).ConclusionsF-FDG PET/MR and F-FDG PET/CT show a similar diagnostic performance in lymphoma patients. However, if DWI is included in the F-FDG PET/MR protocol, results surpass those of F-FDG PET/CT because of the higher sensitivity of DWI for mucosa-associated lymphoid tissue lymphomas.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.