-
J Am Med Inform Assoc · Nov 2013
Comparative StudyThree-dimensional morphological and signal intensity features for detection of intervertebral disc degeneration from magnetic resonance images.
- A Neubert, J Fripp, C Engstrom, D Walker, M-A Weber, R Schwarz, and S Crozier.
- The Australian E-Health Research Centre, CSIRO ICT Centre, Brisbane, Queensland, Australia.
- J Am Med Inform Assoc. 2013 Nov 1; 20 (6): 1082-90.
Background And ObjectivesAdvances in MRI hardware and sequences are continually increasing the amount and complexity of data such as those generated in high-resolution three-dimensional (3D) scanning of the spine. Efficient informatics tools offer considerable opportunities for research and clinically based analyses of magnetic resonance studies. In this work, we present and validate a suite of informatics tools for automated detection of degenerative changes in lumbar intervertebral discs (IVD) from both 3D isotropic and routine two-dimensional (2D) clinical T2-weighted MRI.Materials And MethodsAn automated segmentation approach was used to extract morphological (traditional 2D radiological measures and novel 3D shape descriptors) and signal appearance (extracted from signal intensity histograms) features. The features were validated against manual reference, compared between 2D and 3D MRI scans and used for quantification and classification of IVD degeneration across magnetic resonance datasets containing IVD with early and advanced stages of degeneration.Results And ConclusionsCombination of the novel 3D-based shape and signal intensity features on 3D (area under receiver operating curve (AUC) 0.984) and 2D (AUC 0.988) magnetic resonance data deliver a significant improvement in automated classification of IVD degeneration, compared to the combination of previously used 2D radiological measurement and signal intensity features (AUC 0.976 and 0.983, respectively). Further work is required regarding the usefulness of 2D and 3D shape data in relation to clinical scores of lower back pain. The results reveal the potential of the proposed informatics system for computer-aided IVD diagnosis from MRI in large-scale research studies and as a possible adjunct for clinical diagnosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.