• Med Phys · Oct 2006

    Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype.

    • M J Daly, J H Siewerdsen, D J Moseley, D A Jaffray, and J C Irish.
    • Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 Canada.
    • Med Phys. 2006 Oct 1; 33 (10): 3767-80.

    AbstractCone-beam computed tomography (CBCT) with a flat-panel detector represents a promising modality for intraoperative imaging in interventional procedures, demonstrating sub-mm three-dimensional (3D) spatial resolution and soft-tissue visibility. Measurements of patient dose and in-room exposure for CBCT-guided head and neck surgery are reported, and the 3D imaging performance as a function of dose and other acquisition/reconstruction parameters is investigated. Measurements were performed on a mobile isocentric C-arm (Siemens PowerMobil) modified in collaboration with Siemens Medical Solutions (Erlangen, Germany) to provide flat-panel CBCT. Imaging dose was measured in a custom-built 16 cm cylindrical head phantom at four positions (isocenter, anterior, posterior, and lateral) as a function of kVp (80-120 kVp) and C-arm trajectory ("tube-under" and "tube-over" half-rotation orbits). At 100 kVp, for example ("tube-under" orbit), the imaging dose was 0.059 (isocenter), 0.022 (anterior), 0.10 (posterior), and 0.056 (lateral) mGy/ mAs, with scans at approximately 50 and approximately 170 mAs typical for visualization of bony and soft-tissue structures, respectively. Dose to radiosensitive structures (viz., the eyes and thyroid) were considered in particular: significant dose sparing to the eyes (a factor of 5) was achieved using a "tube-under" (rather than "tube-over") half-rotation orbit; a thyroid shield (0.5 mm Pb-equivalent) gave moderate reduction in thyroid dose due to x-ray scatter outside the primary field of view. In-room exposure was measured at positions around the operating table and up to 2 m from isocenter. A typical CBCT scan (10 mGy to isocenter) gave in-air exposure ranging from 29 mR (0.26 mSv) at 35 cm from isocenter, to <0.5 mR (<0.005 mSv) at 2 m from isocenter. Three-dimensional (3D) image quality was assessed in CBCT reconstructions of an anthropomorphic head phantom containing contrast-detail spheres (11-103 HU; 1.6-12.7 mm) and a natural human skeleton. The contrast-to-noise ratio (CNR) was evaluated across a broad range of dose (0.6-23.3 mGy). CNR increased as the square root of dose, with excellent visualization of bony and soft-tissue structures achieved at approximately 3 mGy (0.10 mSv) and approximately 10 mGy (0.35 mSv), respectively. The prototype C-arm demonstrates CBCT image quality sufficient for guidance of head and neck procedures based on soft-tissue and bony anatomy at dose levels low enough for repeat intraoperative imaging, with total dose over the course of the procedure comparable to or less than the effective dose of a typical (2 mSv) diagnostic CT of the head.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.