-
- Wesley S Warner, Stewart Yeoh, Alan Light, Jie Zhang, and Mark A Mahan.
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, Salt Lake City, Utah.
- Neurosurgery. 2020 Mar 1; 86 (3): 437-445.
BackgroundAlthough most severe peripheral nerve injuries result from high-speed mechanisms, there is no laboratory model to replicate this clinical condition.ObjectiveTo qualitatively and quantitatively describe microanatomical injury of rapid stretch.MethodsThe sciatic nerves of 36 Sprague-Dawley rats were subjected to rapid-stretch nerve injury, using fixed-direction strain produced via constrained weight drop applied to an intact nerve. Nerve injury severity was categorized by biomechanical parameters. Injury to nerve microarchitecture was quantified with serial longitudinal sectioning, with specific focus on the endoneurium, perineurium, and epineurium.ResultsFour grades of stretch injury severity were determined by mathematical cluster analysis: sham, elastic stretch, inelastic stretch, and stretch rupture. Two patterns of injury to endoneurial architecture were quantified: loss of fiber undulation (straightened fibers) and rupturing of individual fibers ("microruptures"). Straightening of nerve fibers was the earliest accommodation to stretch injury and accounted for elongation during elastic stretch. Microruptures were distributed along the length of the nerve and were more severe and involved greater volume of the nerve at higher biomechanical severity. Epineurium and perineurium disruption increased in frequency with progressive injury severity, yet did not predict transition from one injury grade to another (P = .3), nor was it a hallmark of severe injury. Conversely, accumulation of microruptures provided strong correlation to nerve injury severity (Pearson's R = .9897) and progression to mechanical failure.ConclusionNerve architecture is injured in a graded fashion during stretch injury, which likely reflects tissue biomechanics. This study suggests new considerations in the theoretical framework of nerve stretch trauma.Copyright © 2019 by the Congress of Neurological Surgeons.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.