-
- Duncan Wilson, Gareth Ambler, Keon-Joo Lee, Jae-Sung Lim, Masayuki Shiozawa, Masatoshi Koga, Linxin Li, Caroline Lovelock, Hugues Chabriat, Michael Hennerici, Yuen Kwun Wong, Henry Ka Fung Mak, Luis Prats-Sánchez, Alejandro Martínez-Domeño, Shigeru Inamura, Kazuhisa Yoshifuji, Ethem Murat Arsava, Solveig Horstmann, Jan Purrucker, Bonnie Yin Ka Lam, Adrian Wong, Young Dae Kim, Tae-Jin Song, Maarten Schrooten, Robin Lemmens, Sebastian Eppinger, Thomas Gattringer, Ender Uysal, Zeynep Tanriverdi, Natan M Bornstein, AssayagEinor BenEBDepartment of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel., Hen Hallevi, Jun Tanaka, Hideo Hara, Shelagh B Coutts, Lisa Hert, Alexandros Polymeris, David J Seiffge, Philippe Lyrer, Ale Algra, Jaap Kappelle, Rustam Al-Shahi Salman, Hans R Jäger, LipGregory Y HGYHLiverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark., Heinrich P Mattle, Leonidas D Panos, Jean-Louis Mas, Laurence Legrand, Christopher Karayiannis, Thanh Phan, Sarah Gunkel, Nicolas Christ, Jill Abrigo, Thomas Leung, Winnie Chu, Francesca Chappell, Stephen Makin, Derek Hayden, David J Williams, M Eline Kooi, Dianne H K van Dam-Nolen, Carmen Barbato, Simone Browning, Kim Wiegertjes, Anil M Tuladhar, Noortje Maaijwee, Christine Guevarra, Chathuri Yatawara, Anne-Marie Mendyk, Christine Delmaire, Sebastian Köhler, van OostenbruggeRobertRDepartment of Neurology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands., Ying Zhou, Chao Xu, Saima Hilal, Bibek Gyanwali, Christopher Chen, Min Lou, Julie Staals, Régis Bordet, Nagaendran Kandiah, Frank-Erik de Leeuw, Robert Simister, Aad van der Lugt, Peter J Kelly, Joanna M Wardlaw, Yannie Soo, Felix Fluri, Velandai Srikanth, David Calvet, Simon Jung, KwaVincent I HVIHDepartment of Neurology, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands., Stefan T Engelter, Nils Peters, Eric E Smith, Yusuke Yakushiji, Dilek Necioglu Orken, Franz Fazekas, Vincent Thijs, Ji Hoe Heo, Vincent Mok, Roland Veltkamp, Hakan Ay, Toshio Imaizumi, Beatriz Gomez-Anson, Kui Kai Lau, Eric Jouvent, Peter M Rothwell, Kazunori Toyoda, Hee-Joon Bae, Joan Marti-Fabregas, David J Werring, and Microbleeds International Collaborative Network.
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London UK; New Zealand Brain Research Institute, Christchurch, New Zealand.
- Lancet Neurol. 2019 Jul 1; 18 (7): 653665653-665.
BackgroundCerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke.MethodsWe did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602.FindingsBetween Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19-2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20-1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82-3·29) for intracranial haemorrhage and 1·23 (1·08-1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08-6·72] for intracranial haemorrhage vs 1·47 [1·19-1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36-9·05] vs 1·43 [1·07-1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69-15·81] vs 1·86 [1·23-1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48-84] per 1000 patient-years vs 27 intracranial haemorrhages [17-41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46-108] per 1000 patient-years vs 39 intracranial haemorrhages [21-67] per 1000 patient-years).InterpretationIn patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden.FundingBritish Heart Foundation and UK Stroke Association.Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.