• Journal of biomechanics · Apr 2018

    Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.

    • B Hu, P C Dixon, J V Jacobs, J T Dennerlein, and J M Schiffman.
    • Department of Environmental Health, Harvard T.H. Chan School of Public Health, United States; Liberty Mutual Research Institute for Safety, United States. Electronic address: boyihu@hsph.harvard.edu.
    • J Biomech. 2018 Apr 11; 71: 37-42.

    AbstractThe aim of this study was to investigate if a machine learning algorithm utilizing triaxial accelerometer, gyroscope, and magnetometer data from an inertial motion unit (IMU) could detect surface- and age-related differences in walking. Seventeen older (71.5 ± 4.2 years) and eighteen young (27.0 ± 4.7 years) healthy adults walked over flat and uneven brick surfaces wearing an inertial measurement unit (IMU) over the L5 vertebra. IMU data were binned into smaller data segments using 4-s sliding windows with 1-s step lengths. Ninety percent of the data were used as training inputs and the remaining ten percent were saved for testing. A deep learning network with long short-term memory units was used for training (fully supervised), prediction, and implementation. Four models were trained using the following inputs: all nine channels from every sensor in the IMU (fully trained model), accelerometer signals alone, gyroscope signals alone, and magnetometer signals alone. The fully trained models for surface and age outperformed all other models (area under the receiver operator curve, AUC = 0.97 and 0.96, respectively; p ≤ .045). The fully trained models for surface and age had high accuracy (96.3, 94.7%), precision (96.4, 95.2%), recall (96.3, 94.7%), and f1-score (96.3, 94.6%). These results demonstrate that processing the signals of a single IMU device with machine-learning algorithms enables the detection of surface conditions and age-group status from an individual's walking behavior which, with further learning, may be utilized to facilitate identifying and intervening on fall risk.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…