• Cochrane Db Syst Rev · May 2017

    Review Meta Analysis

    Lifestyle interventions for the treatment of women with gestational diabetes.

    • Julie Brown, Nisreen A Alwan, Jane West, Stephen Brown, Christopher Jd McKinlay, Diane Farrar, and Caroline A Crowther.
    • Liggins Institute, The University of Auckland, Park Rd, Grafton, Auckland, New Zealand, 1142.
    • Cochrane Db Syst Rev. 2017 May 4; 5 (5): CD011970CD011970.

    BackgroundGestational diabetes (GDM) is glucose intolerance, first recognised in pregnancy and usually resolving after birth. GDM is associated with both short- and long-term adverse effects for the mother and her infant. Lifestyle interventions are the primary therapeutic strategy for many women with GDM.ObjectivesTo evaluate the effects of combined lifestyle interventions with or without pharmacotherapy in treating women with gestational diabetes.Search MethodsWe searched the Pregnancy and Childbirth Group's Trials Register (14 May 2016), ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP) (14th May 2016) and reference lists of retrieved studies.Selection CriteriaWe included only randomised controlled trials comparing a lifestyle intervention with usual care or another intervention for the treatment of pregnant women with GDM. Quasi-randomised trials were excluded. Cross-over trials were not eligible for inclusion. Women with pre-existing type 1 or type 2 diabetes were excluded.Data Collection And AnalysisWe used standard methodological procedures expected by the Cochrane Collaboration. All selection of studies, data extraction was conducted independently by two review authors.Main ResultsFifteen trials (in 45 reports) are included in this review (4501 women, 3768 infants). None of the trials were funded by a conditional grant from a pharmaceutical company. The lifestyle interventions included a wide variety of components such as education, diet, exercise and self-monitoring of blood glucose. The control group included usual antenatal care or diet alone. Using GRADE methodology, the quality of the evidence ranged from high to very low quality. The main reasons for downgrading evidence were inconsistency and risk of bias. We summarised the following data from the important outcomes of this review. Lifestyle intervention versus control groupFor the mother:There was no clear evidence of a difference between lifestyle intervention and control groups for the risk of hypertensive disorders of pregnancy (pre-eclampsia) (average risk ratio (RR) 0.70; 95% confidence interval (CI) 0.40 to 1.22; four trials, 2796 women; I2 = 79%, Tau2 = 0.23; low-quality evidence); caesarean section (average RR 0.90; 95% CI 0.78 to 1.05; 10 trials, 3545 women; I2 = 48%, Tau2 = 0.02; low-quality evidence); development of type 2 diabetes (up to a maximum of 10 years follow-up) (RR 0.98, 95% CI 0.54 to 1.76; two trials, 486 women; I2 = 16%; low-quality evidence); perineal trauma/tearing (RR 1.04, 95% CI 0.93 to 1.18; one trial, n = 1000 women; moderate-quality evidence) or induction of labour (average RR 1.20, 95% CI 0.99 to 1.46; four trials, n = 2699 women; I2 = 37%; high-quality evidence).More women in the lifestyle intervention group had met postpartum weight goals one year after birth than in the control group (RR 1.75, 95% CI 1.05 to 2.90; 156 women; one trial, low-quality evidence). Lifestyle interventions were associated with a decrease in the risk of postnatal depression compared with the control group (RR 0.49, 95% CI 0.31 to 0.78; one trial, n = 573 women; low-quality evidence).For the infant/child/adult:Lifestyle interventions were associated with a reduction in the risk of being born large-for-gestational age (LGA) (RR 0.60, 95% CI 0.50 to 0.71; six trials, 2994 infants; I2 = 4%; moderate-quality evidence). Birthweight and the incidence of macrosomia were lower in the lifestyle intervention group.Exposure to the lifestyle intervention was associated with decreased neonatal fat mass compared with the control group (mean difference (MD) -37.30 g, 95% CI -63.97 to -10.63; one trial, 958 infants; low-quality evidence). In childhood, there was no clear evidence of a difference between groups for body mass index (BMI) ≥ 85th percentile (RR 0.91, 95% CI 0.75 to 1.11; three trials, 767 children; I2 = 4%; moderate-quality evidence).There was no clear evidence of a difference between lifestyle intervention and control groups for the risk of perinatal death (RR 0.09, 95% CI 0.01 to 1.70; two trials, 1988 infants; low-quality evidence). Of 1988 infants, only five events were reported in total in the control group and there were no events in the lifestyle group. There was no clear evidence of a difference between lifestyle intervention and control groups for a composite of serious infant outcome/s (average RR 0.57, 95% CI 0.21 to 1.55; two trials, 1930 infants; I2 = 82%, Tau2 = 0.44; very low-quality evidence) or neonatal hypoglycaemia (average RR 0.99, 95% CI 0.65 to 1.52; six trials, 3000 infants; I2 = 48%, Tau2 = 0.12; moderate-quality evidence). Diabetes and adiposity in adulthood and neurosensory disability in later childhoodwere not prespecified or reported as outcomes for any of the trials included in this review.Authors' ConclusionsLifestyle interventions are the primary therapeutic strategy for women with GDM. Women receiving lifestyle interventions were less likely to have postnatal depression and were more likely to achieve postpartum weight goals. Exposure to lifestyle interventions was associated with a decreased risk of the baby being born LGA and decreased neonatal adiposity. Long-term maternal and childhood/adulthood outcomes were poorly reported.The value of lifestyle interventions in low-and middle-income countries or for different ethnicities remains unclear. The longer-term benefits or harms of lifestyle interventions remains unclear due to limited reporting.The contribution of individual components of lifestyle interventions could not be assessed. Ten per cent of participants also received some form of pharmacological therapy. Lifestyle interventions are useful as the primary therapeutic strategy and most commonly include healthy eating, physical activity and self-monitoring of blood glucose concentrations.Future research could focus on which specific interventions are most useful (as the sole intervention without pharmacological treatment), which health professionals should give them and the optimal format for providing the information. Evaluation of long-term outcomes for the mother and her child should be a priority when planning future trials. There has been no in-depth exploration of the costs 'saved' from reduction in risk of LGA/macrosomia and potential longer-term risks for the infants.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.