-
J. Neurol. Neurosurg. Psychiatr. · Oct 2019
Expanding the spectrum of genes responsible for hereditary motor neuropathies.
- Stefano C Previtali, Edward Zhao, Dejan Lazarevic, Giovanni Battista Pipitone, Gian Maria Fabrizi, Fiore Manganelli, Anna Mazzeo, Davide Pareyson, Angelo Schenone, Franco Taroni, Giuseppe Vita, Emilia Bell... more
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy bolino.alessandra@hsr.it previtali.stefano@hsr.it.
- J. Neurol. Neurosurg. Psychiatr. 2019 Oct 1; 90 (10): 117111791171-1179.
BackgroundInherited peripheral neuropathies (IPNs) represent a broad group of genetically and clinically heterogeneous disorders, including axonal Charcot-Marie-Tooth type 2 (CMT2) and hereditary motor neuropathy (HMN). Approximately 60%-70% of cases with HMN/CMT2 still remain without a genetic diagnosis. Interestingly, mutations in HMN/CMT2 genes may also be responsible for motor neuron disorders or other neuromuscular diseases, suggesting a broad phenotypic spectrum of clinically and genetically related conditions. Thus, it is of paramount importance to identify novel causative variants in HMN/CMT2 patients to better predict clinical outcome and progression.MethodsWe designed a collaborative study for the identification of variants responsible for HMN/CMT2. We collected 15 HMN/CMT2 families with evidence for autosomal recessive inheritance, who had tested negative for mutations in 94 known IPN genes, who underwent whole-exome sequencing (WES) analyses. Candidate genes identified by WES were sequenced in an additional cohort of 167 familial or sporadic HMN/CMT2 patients using next-generation sequencing (NGS) panel analysis.ResultsBioinformatic analyses led to the identification of novel or very rare variants in genes, which have not been previously associated with HMN/CMT2 (ARHGEF28, KBTBD13, AGRN and GNE); in genes previously associated with HMN/CMT2 but in combination with different clinical phenotypes (VRK1 and PNKP), and in the SIGMAR1 gene, which has been linked to HMN/CMT2 in only a few cases. These findings were further validated by Sanger sequencing, segregation analyses and functional studies.ConclusionsThese results demonstrate the broad spectrum of clinical phenotypes that can be associated with a specific disease gene, as well as the complexity of the pathogenesis of neuromuscular disorders.© Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.
Notes
Knowledge, pearl, summary or comment to share?