• J Clin Monit Comput · Dec 2018

    Review

    Quantitative measures of EEG for prediction of outcome in cardiac arrest subjects treated with hypothermia: a literature review.

    • Shadnaz Asgari, Hana Moshirvaziri, Fabien Scalzo, and Nima Ramezan-Arab.
    • Biomedical Engineering Department, California State University, Long Beach, 1250 Bellflower Blvd.-MS 8302, Long Beach, 90840-8302, CA, USA. Shadnaz.Asgari@csulb.edu.
    • J Clin Monit Comput. 2018 Dec 1; 32 (6): 977-992.

    AbstractCardiac arrest (CA) is the leading cause of death and disability in the United States. Early and accurate prediction of CA outcome can help clinicians and families to make a better-informed decision for the patient's healthcare. Studies have shown that electroencephalography (EEG) may assist in early prognosis of CA outcome. However, visual EEG interpretation is subjective, labor-intensive, and requires interpretation by a medical expert, i.e., neurophysiologists. These limiting factors may hinder the applicability of such testing as the prognostic method in clinical settings. Automatic EEG pattern recognition using quantitative measures can make the EEG analysis more objective and less time consuming. It also allows to detect and display hidden patterns that may be useful for the prognosis over longer time periods of monitoring. Given these potential benefits, there have been an increasing interest over the last few years in the development and employment of EEG quantitative measures to predict CA outcome. This paper extensively reviews the definition and efficacy of various measures that have been employed for the prediction of outcome in CA subjects undergoing hypothermia (a neuroprotection method that has become a standard of care to improve the functional recovery of CA patients after resuscitation). The review details the State-of-the-Art and provides some perspectives on what seems to be promising for the early and accurate prognostication of CA outcome using the quantitative measures of EEG.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.