-
Critical care medicine · Jun 2018
Observational StudyPhenotyping Cardiac Arrest: Bench and Bedside Characterization of Brain and Heart Injury Based on Etiology.
- Thomas Uray, Andrew Lamade, Jonathan Elmer, Tomas Drabek, Jason P Stezoski, Amalea Missé, Keri Janesko-Feldman, Robert H Garman, Niel Chen, Patrick M Kochanek, Cameron Dezfulian, Clifton W Callaway, Ankur A Doshi, Adam Frisch, Francis X Guyette, Josh C Reynolds, Jon C Rittenberger, and University of Pittsburgh Post-Cardiac Arrest Service.
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA.
- Crit. Care Med. 2018 Jun 1; 46 (6): e508-e515.
ObjectivesCardiac arrest etiology may be an important source of between-patient heterogeneity, but the impact of etiology on organ injury is unknown. We tested the hypothesis that asphyxial cardiac arrest results in greater neurologic injury than cardiac etiology cardiac arrest (ventricular fibrillation cardiac arrest), whereas ventricular fibrillation cardiac arrest results in greater cardiovascular dysfunction after return of spontaneous circulation.DesignProspective observational human and randomized animal study.SettingUniversity laboratory and ICUs.PatientsFive-hundred forty-three cardiac arrest patients admitted to ICU.SubjectsSeventy-five male Sprague-Dawley rats.InterventionsWe examined neurologic and cardiovascular injury in Isoflurane-anesthetized rat cardiac arrest models matched by ischemic time. Hemodynamic and neurologic outcomes were assessed after 5 minutes no flow asphyxial cardiac arrest or ventricular fibrillation cardiac arrest. Comparison was made to injury patterns observed after human asphyxial cardiac arrest or ventricular fibrillation cardiac arrest.Measurements And Main ResultsIn rats, cardiac output (20 ± 10 vs 45 ± 9 mL/min) and pH were lower and lactate higher (9.5 ± 1.0 vs 6.4 ± 1.3 mmol/L) after return of spontaneous circulation from ventricular fibrillation cardiac arrest versus asphyxial cardiac arrest (all p < 0.01). Asphyxial cardiac arrest resulted in greater early neurologic deficits, 7-day neuronal loss, and reduced freezing time (memory) after conditioned fear (all p < 0.05). Brain antioxidant reserves were more depleted following asphyxial cardiac arrest. In adjusted analyses, human ventricular fibrillation cardiac arrest was associated with greater cardiovascular injury based on peak troponin (7.8 ng/mL [0.8-57 ng/mL] vs 0.3 ng/mL [0.0-1.5 ng/mL]) and ejection fraction by echocardiography (20% vs 55%; all p < 0.0001), whereas asphyxial cardiac arrest was associated with worse early neurologic injury and poor functional outcome at hospital discharge (n = 46 [18%] vs 102 [44%]; p < 0.0001). Most ventricular fibrillation cardiac arrest deaths (54%) were the result of cardiovascular instability, whereas most asphyxial cardiac arrest deaths (75%) resulted from neurologic injury (p < 0.0001).ConclusionsIn transcending rat and human studies, we find a consistent phenotype of heart and brain injury after cardiac arrest based on etiology: ventricular fibrillation cardiac arrest produces worse cardiovascular dysfunction, whereas asphyxial cardiac arrest produces worsened neurologic injury associated with greater oxidative stress.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.