• Spine · Nov 2019

    In Vitro Biomechanical Validation of a Self-Adaptive Ratchet Growing Rod Construct for Fusionless Scoliosis Correction.

    • Zong-Xing Chen, Arun-Kumar Kaliya-Perumal, Chi-Chien Niu, Jaw-Lin Wang, and Po-Liang Lai.
    • Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and University College of Medicine, Taoyuan, Taiwan.
    • Spine. 2019 Nov 1; 44 (21): E1231-E1240.

    Study DesignIn vitro biomechanical evaluation of a novel self-adaptive unidirectional ratchet growing rod (RGR) system.ObjectiveThe aim of this study was to propose and biomechanically validate a novel RGR construct in vitro using porcine thoracic spines and calculate the tensile force required to elongate the RGR with springs, without springs, and with soft tissue encapsulation (induced in vivo in rabbits).Summary Of Background DataLiterature lacks clear consensus regarding the implant of choice for early-onset scoliosis. Multiple systems are currently available, and each has its own advantages and disadvantages. Therefore, studying novel designs that can credibly accommodate growth and curb deformity progression is of principle importance.MethodsIn vitro biomechanical motion tests were done using six porcine thoracic spines with pedicle screws at T3 and T8. A pure moment of ±5 Nm was loaded in lateral bending (LB) and flexion-extension. Range of motion (ROM) and neutral zone (NZ) of each specimen was determined after connecting the free movable growing rods (FGRs), RGRs, and standard rods (SRs). Tensile tests were done to measure the force required to elongate the RGR with springs, without springs, and with soft tissue encapsulation (induced in vivo in rabbits).ResultsGlobal ROM, implanted T3-T8 ROM, and the NZ of specimens with FGRs and RGRs were significantly higher than that with SRs. The RGRs favored unidirectional elongation in both LB and flexion. The tensile forces required for elongating the RGR without springs, with springs, and with soft tissue capsulation (by a scaled unit of 3 mm) were 3 ± 1.3 N, 10.5 ± 0.4 N, and 48.4 ± 14.4 N, respectively.ConclusionThe RGR could stabilize and favor unidirectional elongation of the implanted spinal column when appropriate forces were present. There was no device failure as far as we have studied and it is anticipated that, with further safety and feasibility assessment, RGRs could be adapted for clinical use.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.