• Eur Heart J Cardiovasc Imaging · Dec 2016

    Comparative Study

    Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: comparison of high-resolution speckle tracking and feature tracking.

    • Matthias Aurich, Marius Keller, Sebastian Greiner, Henning Steen, Fabian Aus dem Siepen, Johannes Riffel, Hugo A Katus, Sebastian J Buss, and Derliz Mereles.
    • Department of Internal Medicine III, Cardiology, Angiology and Pneumology, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany matthias.aurich@med.uni-heidelberg.de.
    • Eur Heart J Cardiovasc Imaging. 2016 Dec 1; 17 (12): 1370-1378.

    AimsAssessment of left ventricular (LV) systolic function plays a central role in cardiac imaging. Calculation of ejection fraction (EF) is the current method of choice; however, its limited intermodal comparability represents a major drawback. The assessment of myocardial mechanics by strain imaging may better reflect the complex myocardial contractility. We aimed to evaluate different methods for quantification of LV strain on global and regional levels with a focus on the new non-proprietary feature tracking (FT) algorithm.Methods And ResultsMeasurements of LV deformation were performed by means of high-resolution two-dimensional (2D) speckle tracking echocardiography (STE) and compared with values obtained by 2D feature tracking echocardiography (FT-E) and feature tracking cardiac magnetic resonance imaging (FT-CMR). Assessments with echocardiography started within 30 min after CMR examination to minimize time-dependent variations in myocardial function. Forty-seven patients were included. Assessments by STE were -15.7 ± 5.0% for global longitudinal strain (GLS), -14.6 ± 4.5% for global circumferential strain (GCS), and 21.6 ± 13.3% for global radial strain (GRS), while values obtained with FT-E were -13.1 ± 4.0, -13.6 ± 4.0, 20.3 ± 9.5, and with FT-CMR -15.0 ± 4.0, -16.9 ± 5.4, and 35.0 ± 10.8, respectively. Linear regression and the Bland-Altman analysis showed the best intramodal association for STE GLS and FT-E GLS (r = 0.88, bias = -2.7%, LOA = ±4.7%). The correlation for GCS and GRS was weaker, and for regional strain was poor. In contrast to EF, GLS showed a better intermodal correlation between echocardiography and CMR (r = 0.81 by speckle tracking, r = 0.8 by FT, and r = 0.78 by EF).ConclusionIn our study, measurement of global longitudinal LV strain using the new FT algorithm with CMR and echocardiography was comparable with measurements obtained by high-resolution STE. Compared with echocardiographic EF determination, FT-E GLS shows a better reproducibility and a better intermodal agreement with CMR, representing a fair non-proprietary solution for this assessment.Clinical Trial Registrationclinicaltrials.gov. Unique identifier: NCT01275963.Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…