• PLoS medicine · Aug 2017

    Multicenter Study Observational Study

    Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: An observational, multicenter study.

    • Eric Peter Thelin, David W Nelson, Juho Vehviläinen, Harriet Nyström, Riku Kivisaari, Jari Siironen, Mikael Svensson, Markus B Skrifvars, Bo-Michael Bellander, and Rahul Raj.
    • Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    • PLoS Med. 2017 Aug 1; 14 (8): e1002368e1002368.

    BackgroundTraumatic brain injury (TBI) is a major contributor to morbidity and mortality. Computerized tomography (CT) scanning of the brain is essential for diagnostic screening of intracranial injuries in need of neurosurgical intervention, but may also provide information concerning patient prognosis and enable baseline risk stratification in clinical trials. Novel CT scoring systems have been developed to improve current prognostic models, including the Stockholm and Helsinki CT scores, but so far have not been extensively validated. The primary aim of this study was to evaluate the Stockholm and Helsinki CT scores for predicting functional outcome, in comparison with the Rotterdam CT score and Marshall CT classification. The secondary aims were to assess which individual components of the CT scores best predict outcome and what additional prognostic value the CT scoring systems contribute to a clinical prognostic model.Methods And FindingsTBI patients requiring neuro-intensive care and not included in the initial creation of the Stockholm and Helsinki CT scoring systems were retrospectively included from prospectively collected data at the Karolinska University Hospital (n = 720 from 1 January 2005 to 31 December 2014) and Helsinki University Hospital (n = 395 from 1 January 2013 to 31 December 2014), totaling 1,115 patients. The Marshall CT classification and the Rotterdam, Stockholm, and Helsinki CT scores were assessed using the admission CT scans. Known outcome predictors at admission were acquired (age, pupil responsiveness, admission Glasgow Coma Scale, glucose level, and hemoglobin level) and used in univariate, and multivariable, regression models to predict long-term functional outcome (dichotomizations of the Glasgow Outcome Scale [GOS]). In total, 478 patients (43%) had an unfavorable outcome (GOS 1-3). In the combined cohort, overall prognostic performance was more accurate for the Stockholm CT score (Nagelkerke's pseudo-R2 range 0.24-0.28) and the Helsinki CT score (0.18-0.22) than for the Rotterdam CT score (0.13-0.15) and Marshall CT classification (0.03-0.05). Moreover, the Stockholm and Helsinki CT scores added the most independent prognostic value in the presence of other known clinical outcome predictors in TBI (6% and 4%, respectively). The aggregate traumatic subarachnoid hemorrhage (tSAH) component of the Stockholm CT score was the strongest predictor of unfavorable outcome. The main limitations were the retrospective nature of the study, missing patient information, and the varying follow-up time between the centers.ConclusionsThe Stockholm and Helsinki CT scores provide more information on the damage sustained, and give a more accurate outcome prediction, than earlier classification systems. The strong independent predictive value of tSAH may reflect an underrated component of TBI pathophysiology. A change to these newer CT scoring systems may be warranted.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…