• Eur Spine J · Jul 2020

    Randomized Controlled Trial

    Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial.

    • Pierre Auloge, Roberto Luigi Cazzato, Nitin Ramamurthy, Pierre de Marini, Chloé Rousseau, Julien Garnon, Yan Philippe Charles, Jean-Paul Steib, and Afshin Gangi.
    • Interventional Radiology, Imagerie Interventionnelle, Nouvel Hôpital Civil, University Hospital of Strasbourg, 1, Place de l'Hôpital, B.P. 426, 67091, Strasbourg Cedex, France. pierreauloge@gmail.com.
    • Eur Spine J. 2020 Jul 1; 29 (7): 1580-1589.

    PurposeTo assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs).Material And MethodsThis prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time.ResultsTechnical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B (p > 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s; p = 0.001). Dose-area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm2 and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm2 and 10.4 ± 4.1 s; p = 0.025 and 0.005), respectively.ConclusionAR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance. These slides can be retrieved under Electronic Supplementary Material.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…