• J. Cardiothorac. Vasc. Anesth. · Aug 2019

    Review

    New Developments in Hemodynamic Monitoring.

    • Scheeren Thomas W L TWL Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. Electronic address: t.w.l.sche and Ramsay Michael A E MAE Department of Anesthesiology and Pain Management, Baylor University Medical Center, Dallas, TX..
    • Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. Electronic address: t.w.l.scheeren@umcg.nl.
    • J. Cardiothorac. Vasc. Anesth. 2019 Aug 1; 33 Suppl 1: S67-S72.

    AbstractHemodynamic monitoring is an essential part of the perioperative management of the cardiovascular patient. It helps to detect hemodynamic alterations, diagnose their underlying causes, and optimize oxygen delivery to the tissues. Furthermore, hemodynamic monitoring is necessary to evaluate the adequacy of therapeutic interventions such as volume expansion or vasoactive medications. Recent developments include the move from static to dynamic variables to assess conditions such as cardiac preload and fluid responsiveness and the transition to less-invasive or even noninvasive monitoring techniques, at least in the perioperative setting. This review describes the available techniques that currently are being used in the care of the cardiovascular patient and discusses their strengths and limitations. Even though the thermodilution method remains the gold standard for measuring cardiac output (CO), the use of the pulmonary artery catheter has declined over the last decades, even in the setting of cardiovascular anesthesia. The transpulmonary thermodilution method, in addition to accurately measuring CO, provides the user with some additional helpful variables, of which extravascular lung water is probably the most interesting. Less-invasive monitoring techniques use, for example, pulse contour analysis to originate flow-derived variables such as stroke volume and CO from the arterial pressure signal, or they may measure the velocity-time integral in the descending aorta to estimate the stroke volume, using, for example, the esophageal Doppler. Completely noninvasive methods such as the volume clamp method use finger cuffs to reconstruct the arterial pressure waveform, from which stroke volume and CO are calculated. All of these less-invasive CO monitoring devices have percentage errors around 40% compared with reference methods (thermodilution), meaning that the values are not interchangeable.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.