• Anat Rec (Hoboken) · Nov 2016

    The Distribution of Ki-67 and Doublecortin Immunopositive Cells in the Brains of Three Microchiropteran Species, Hipposideros fuliginosus, Triaenops persicus, and Asellia tridens.

    • Richard Chawana, Nina Patzke, Abdulaziz N Alagaili, Nigel C Bennett, Osama B Mohammed, Consolate Kaswera-Kyamakya, Emmanuel Gilissen, Amadi O Ihunwo, John D Pettigrew, and Paul R Manger.
    • School of Anatomical Sciences Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, Republic of South Africa.
    • Anat Rec (Hoboken). 2016 Nov 1; 299 (11): 1548-1560.

    AbstractThis study uses Ki-67 and doublecortin (DCX) immunohistochemistry to delineate potential neurogenic zones, migratory pathways, and terminal fields associated with adult neurogenesis in the brains of three microchiropterans. As with most mammals studied to date, the canonical subgranular and subventricular neurogenic zones were observed. Distinct labeling of newly born cells and immature neurons within the dentate gyrus of the hippocampus was observed in all species. A distinct rostral migratory stream (RMS) that appears to split around the medial aspect of the caudate nucleus was observed. These two rostral stream divisions appear to merge at the rostroventral corner of the caudate nucleus to turn and enter the olfactory bulb, where a large terminal field of immature neurons was observed. DCX immunolabeled neurons were observed mostly in the rostral neocortex, but a potential migratory stream to the neocortex was not identified. A broad swathe of newly born cells and immature neurons was found between the caudoventral division of the RMS and the piriform cortex. In addition, occasional immature neurons were observed in the amygdala and DCX-immunopositive axons were observed in the anterior commissure. While the majority of these features have been found in several mammal species, the large number of DCX immunolabeled cells found between the RMS and the piriform cortex and the presence of DCX immunostained axons in the anterior commissure are features only observed in microchiropterans and insectivores to date. In the diphyletic scenario of chiropteran evolution, these observations align the microchiropterans with the insectivores. Anat Rec, 299:1548-1560, 2016. © 2016 Wiley Periodicals, Inc.© 2016 Wiley Periodicals, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…